Series 96

User's Manual

1/16 DIN Temperature Controller with Custom Toolbar (patented)

User Levels:

- New User go to page 1.1
- Experienced User go to page 2.1
- Expert User go to page 2.1
Installers:
- Installation .. go to page 2.1
- Wiring go to page 3.1

NOTE:

Details of a "Note" appear in the narrow margin on the outside or on the bottom of each page.

CAUTION:

Details of a "Caution" appear here in the narrow margin on the outside of each page.

WARNING:
Details of a "Warning" appear here in the narrow margin on the outside of each page.

Safety Information

We use note, caution and warning symbols throughout this book to draw your attention to important operational and safety information.
A "NOTE" marks a short message to alert you to an important detail.
A "CAUTION" safety alert appears with information that is important for protecting your equipment and performance. Be especially careful to read and follow all cautions that apply to your application.
A "WARNING" safety alert appears with information that is important for protecting you, others and equipment from damage. Pay very close attention to all warnings that apply to your application.
The safety alert symbol, \uparrow, (an exclamation point in a triangle) precedes a general CAUTION or WARNING statement.
The electrical hazard symbol, (a lightning bolt in a triangle) precedes an electric shock hazard CAUTION or WARNING safety statement.

Technical Assistance

If you encounter a problem with your Watlow controller, see the Troubleshooting Table in the Appendix and review all of your configuration information to verify that your selections are consistent with your application: inputs; outputs; alarms; limits; etc. If the problem persists after checking the above, you can get technical assistance from your local Watlow representative, or by dialing (507) 454-5300.
An applications engineer will discuss your application with you.
Please have the following information available when calling:

- Complete model number
- User's Manual
- All configuration information
- Diagnostic Menu readings

Your Feedback

Your comments or suggestions on this manual are welcome. Please send them to: Technical Writer, Watlow Winona, 1241 Bundy Blvd., P.O. Box 5580, Winona, MN 55987-5580; phone: (507) 454-5300; fax: (507) 452-4507. The Series 96 User's Manual is copyrighted by Watlow Winona, Inc., © July 2005, with all rights reserved. (2198)

Series 96 Table of Contents

Chapter 1: Overview 1.1
Chapter 2: Installation 2.1
Chapter 3: Wiring 3.1
Input to Output Isolation 3.1
Power Wiring 3.1
Sensor Installation Guidelines 3.1
Input 1 3.2
Input 2 3.3
Output 1 3.4
Output 2 3.5
Output 3 3.6
Output 4 3.7
Wiring Example 3.9
Chapter 4: Navigation and Software 4.1
Keys and Displays 4.1
Navigation 4.2
Software Map 4.3
Basic Navigation for New Users 4.4
Chapter 5: Features 5.1
The System 5.1
Input 5.3
Control Methods 5.5
Alarms 5.9
Errors 5.10
Communications 5.11
Chapter 6: Parameters 6.1
Home Page 6.1
Operations Page 6.2
Setup Page 6.8
Factory Page 6.18
Chapter 7: Ramping 7.1
Appendix A. 1
Troubleshooting Alarms and Errors A. 1
Modbus ${ }^{\text {TM }}$ Register Numbers A. 3
Declaration of Conformity A. 4
Product Specifications A. 5
Ordering Information A. 7
Index A. 8
Prompt Index A. 10
Required Parameter Setup Order.inside back cover
Software Map .inside back coverCalibration Information .inside back coverWarranty and Returns Policy. .back cover

Chapter One Overview

Introduction

With one universal input, a second auxiliary input and four outputs, the Series 96 can be programmed to perform temperature measurement, input event switching, remote set point input, heating, boost heating, cooling, alarms, digital communications, ramp and soak, and retransmit. These features make this controller ideally suited for applications involving plastics, packaging, semiconductor, food processing and lab equipment.
Set point ramping operations include two files with eight steps in each file. The files may be linked to create a single 16 -step profile for varying ramp and soak needs.
With fast 10 hz sampling, burst firing outputs, NEMA 4 x front panel, and 0.1 percent accuracy, the Series 96 can easily handle some of the toughest application needs. The Series 96 is manufactured by ISO 9001-registered Watlow Winona with reliability backed by a threeyear warranty.

Figure 1.1 - Series 96 inputs and outputs.

2

Chapter Two Installation

Figure 2.1 - Series 96 multiple panel cutout dimensions.
NOTE: Measurements between panel cutouts are the minimum recommended.
For rapid mounting, use Greenlee 1/16 DIN punch, die, draw stud, part number 60287, available from Grainger.

Installing the Series 96 Controller

Installing and mounting requires access to the back of the panel.

1. Make the panel cutout using the mounting template dimensions found in this chapter.
2. Check to see that the gasket is properly seated into the gasket channel on the front bezel and that it is not twisted. Make sure that the rounded surface of the gasket is the surface that is exposed from the gasket channel, as this is the surface that will mate to the panel surface. Insert the controller into the panel cutout.
3. With the controller inserted into the panel cutout, take the retention collar and slide it over the controller, making certain that the two locating holes in the retention collar are visible from the rear of the controller, with one hole pointing up and one pointing down. Then, take the mounting collar and slide it over the controller, making certain that one cantilever is pointing up and one is pointing down also. With one hand holding the controller and the other hand using a \#2 Phillips screwdriver, tighten the two screws in the mounting collar until the gap between the bezel and panel surface is $.025^{\prime \prime}$ maximum.

See the figure below. Make sure that you cannot move the controller back and forth in the cutout. If you can, you do not have a proper seal.

Figure 2.2a - Installing the controller.

Figure 2.2b - Series 96 gap dimensions.

CAUTION: Follow the installation procedure exactly to guarantee a proper NEMA 4X seal. Make sure the gasket between the panel and the rim of the case is not twisted and is seated properly. Failure to do so could result in damage to equipment.

NOTE: Be careful not to over-tighten the screws. This may cause the mounting cover to fail. Over-tightening occurs when the front bezel is touching the customer's front panel.

Removing the Series 96 Controller

1. Hold the controller with one hand while using the other hand to loosen the screws with a \#2 Phillips screwdriver until the end of the screw is flush or past the end of the cantilevers; see the figure below.
2. After the screws have been loosened, hold the controller with one hand while squeezing the two screws together with the other hand. Then simply slide the mounting collar off the controller.

Figure 2.2c Removing the controller.

3
 Chapter Three Wiring

NOTE:

It is advisable to check Output 1-4 hardware. These outputs may differ from those listed for the model number on the controller and described in this manual, indicating a customized hardware setup.

CAUTION:
If high voltage is applied to a low-voltage unit, irreversible damage will occur.

WARNING:
To avoid damage to property and equipment, and/or injury of loss of life, use National Electric Code (NEC) standard wiring practices to install and operate the Series 96. Failure to do so could result in injury or death.

CAUTION:
Maintain isolation between input 1 and input 2 to prevent a ground loop. A ground loop may cause incorrect readings, dashes across the upper display or the display of error codes. Failure to follow this guideline could result in damage to equipment and product.

Input-to-Output Isolation

Figure 3.1a Isolation blocks.

Power Wiring

100 to $240 \mathrm{~V} \sim(\mathrm{ac})$, nominal (85 to 264 actual) $96 \mathrm{~A}_{-}$ \qquad - - - - 24 to $28 \mathrm{~V} \approx$ (ac/dc), nominal (21 to 30 actual) 96 B _ \qquad - - - - _

Figure 3.1b Power wiring.

Sensor Installation Guidelines

Thermocouple inputs: Extension wire for thermocouples must be of the same alloy as the thermocouple to limit errors.
When using a process signal ($4-20 \mathrm{~mA}, 0-5 \mathrm{~V}=$ [dc], etc.) for the remote set point or a voltage input for the digital input 2, use an ungrounded or isolated thermocouple. If a grounded thermocouple is required, the signal to input 2 must be isolated to prevent possible ground loops.
RTD input: Each 1Ω of lead wire resistance can cause a $+2^{\circ} \mathrm{F}$ error when using a two-wire RTD. A three-wire RTD sensor overcomes this problem. All three wires must have the same electrical resistance (i.e., same gauge, same length, multi-stranded or solid, same metal).
Process input: Isolation must be maintained between input 1 and input 2. If both input 1 and input 2 are process signals, a separate power supply and transmitter must be used for each input. These inputs must be electrically isolated from one another to prevent ground loops.

Input 1 Wiring

Figure 3.2a - Thermocouple
Available on all units
Impedance: $20 \mathrm{M} \Omega$

Figure 3.2b - RTD (2- or 3-Wire) $\mathbf{1 0 0} \Omega$ Platinum

Available on all units

Figure $3.2 \mathrm{c}-* \mathbf{0} \mathbf{- 5 V}=, \mathbf{1 - 5 V}=$ or $\mathbf{0 - 1 0 V}=$ (dc) Process
Available on all units
Input impedance: $20 \mathrm{k} \Omega$

Figure $3.2 \mathrm{~d}-* \mathbf{0} \mathbf{- 2 0 m A}$ or $\mathbf{4 - 2 0 m A}$ Process
Available on all units Input impedance: 100Ω

**CAUTION:
Process input does not have sensor break protection. Outputs can remain full on.
 guideline could result in damage to equipment and product.

Input 2 Wiring

Figure $3.3 \mathrm{a}-* \mathbf{0} \mathbf{- 5 V}=, \mathbf{1 - 5 V}=$ or $\mathbf{0 - 1 0 V}=$ (dc) Process

WARNING:
To avoid damage to property and equipment, and/or injury of loss of life, use National Electric Code (NEC) standard wiring practices to install and operate the Series 96. Failure to do so could result in injury or death.

CAUTION:
Maintain isolation between input 1 and input 2 to prevent a ground loop. A ground loop may cause incorrect readings, dashes across the upper display or the display of error codes. Failure to follow this guideline could result in damage to equipment and product.

**CAUTION:
Process input does not have sensor break protection. Outputs can remain full on.

Universal signal conditioner
96 _ 1 -
_ _ _ - - _ _ _ -
Input impedance: $20 \mathrm{k} \Omega$

Figure 3.3b - **0-20mA or 4-20mA Process
Universal signal conditioner
96 _ 1 -
_ _ _ _ - _ _ _ -
Input impedance: 100Ω

Figure 3.3c - Digital Event
96 _ 1 -

Voltage input
3-36V=(dc) Event Input High State
$0-2 \mathrm{~V}=$ (dc) Event Input Low State
Contact closure
$0-2 \mathrm{k} \Omega$ Event Input Low State
$>23 \mathrm{k} \Omega$ Event Input High State

Output 1 Wiring

Figure 3.4a - AC Outputs

NOTE:

Successful installation requires five steps:

- Choose the controller's hardware configuration and model number (Appendix);
- Choose a sensor (Chapters Three and Six, and Appendix);
- Install the controller (Chapter Two);
- Wire the controller (Chapter Three) and
- Configure the controller (Chapters Four, Five and Six).

NOTE:

Switching inductive loads (relay coils, solenoids, etc.) with the mechanical relay, switched dc or solid-state relay output options requires use of an R.C. suppressor.
Watlow carries the R.C. suppressor Quencharc brand name, which is a trademark of ITW Paktron. Watlow Part No. 0804-0147-0000.

-Electromechanical relay without contact suppression
96 \qquad D \qquad - _ _ _ Form C, 2 amps, off-state impedance: $31 \mathrm{M} \Omega$

- Solid-state relay without contact suppression
96 \qquad - K \qquad -- - - 0.5 amps , off-state impedance: $31 \mathrm{M} \Omega$

Figure 3.4b - Switched DC, Open Collector

- Open collector configuration

Maximum voltage $42 \mathrm{~V}=$ (dc)
Maximum current 200 mA

Figure 3.4c-0-20mA and 4-20mA Process

Figure $3.4 \mathrm{~d}-\mathbf{0}-5 \mathrm{~V}=\mathbf{1 - 5 V}=$ and $\mathbf{0 - 1 0 V}=$ (dc) Process

96-_ _- F_{-}_ - _ _ _ _
Minimum load impedance: $1 \mathrm{k} \Omega$

Output 2 Wiring

Figure 3.5a - AC Outputs

NOTE:

Switching inductive loads (relay coils, solenoids, etc.) with the mechanical relay, switched dc or solid-state relay output options requires use of an R.C. suppressor.
Watlow carries the R.C. suppressor Quencharc brand name, which is a trademark of ITW Paktron. Watlow Part No. 0804-0147-0000.

WARNING:
To avoid damage to property and equipment, and/or injury of loss of life, use National Electric Code (NEC) standard wiring practices to install and operate the Series 96. Failure to do so could result in injury or death.
-Electromechanical relay without contact suppression
96 _ D \qquad - - - -

Form C, 2 amps , off-state impedance: 31M Ω
-Solid-state relay without contact suppression
96 \qquad - _ K \qquad - _ _ _

0.5 amps , off-state impedance: $31 \mathrm{M} \Omega$

Figure 3.5b - Switched DC, Open Collector
96 - _C \qquad
Open Collector
Max. voltage: 42 V = (dc)
Max. current: 200 mA
Switched DC
Max. dc supply current:
 30 mA
Supply voltage: 22 to $28 \mathrm{~V}=$ (dc)
Figure 3.5c-0-20mA and 4-20mA Process
96 \qquad
Maximum load impedance: 800Ω

Figure $3.5 \mathrm{~d}-\mathbf{0}-5 \mathrm{~V}=, \mathbf{1 - 5 V}=$ and $0-10 \mathrm{~V}=$ (dc) Process
96 _ _ _ F _ _ _ _ _
Minimum load impedance: $1 \mathrm{k} \Omega$

Output 3 Wiring

Figure 3.6 - AC Outputs

NOTE:
Successful installation requires five steps:

- Choose the controller's hardware configuration and model number (Appendix);
- Choose a sensor (Chapters Three and Six, and Appendix);
- Install the controller (Chapter Two);
- Wire the controller (Chapter Three) and
- Configure the controller (Chapters Four, Five and Six).
NOTE:
Switching inductive loads (relay coils, solenoids, etc.) with the mechanical relay, switched dc or solid-state relay output options requires use of an R.C. suppressor.
Watlow carries the R.C. suppressor Quencharc brand name, which is a trademark of ITW Paktron. Watlow Part No. 0804-0147-0000.

WARNING:

To avoid damage to property and equipment, and/or injury of loss of life, use National Electric Code (NEC) standard wiring practices to install and operate the Series 96. Failure to do so could result in injury or death.

Electromechanical relay without contact suppression
96 \qquad - \qquad D_ --- -
Form C, 2 amps , off-state impedance: $31 \mathrm{M} \Omega$

Output 4 Wiring

Figure 3.7a - AC Outputs

NOTE:

Switching inductive loads (relay coils, solenoids, etc.) with the mechanical relay, switched dc or solid-state relay output options requires use of an R.C. suppressor.
Watlow carries the R.C. suppressor Quencharc brand name, which is a trademark of ITW Paktron. Watlow Part No. 0804-0147-0000.

WARNING:

To avoid damage to property and equipment, and/or injury of loss of life, use National Electric Code (NEC) standard wiring practices to install and operate the Series 96. Failure to do so could result in injury or death.

Electromechanical relay without contact suppression
96 \qquad - \qquad D \qquad
Form C, 2 amps , off-state impedance: $31 \mathrm{M} \Omega$

Figure 3.7b - Communications and Retransmit Option

EIA/TIA-232
96 \qquad R - \qquad
96 _ - \qquad
U - ـ
\qquad

Retransmit Option
96_ - - \qquad M - \qquad

V out: $1,000 \Omega$ minimum load impedance.
I out: 800Ω maximum load impedance.

Figure 3.8a - EIA-232 to EIA-485 Conversion

B\&B Converter (B\&B Electronics Manufacturing Company, [815] 433-5100).

CMC Converter (CMC Connecticut Micro-Computer, Inc., 800-426-2872).

NOTE:

The CMC converter requires an external power supply when used with a laptop computer.

Figure 3.8b - Termination for EIA-232 to EIA-485 Converter

If the system does not work properly, it may need termination resistors at each end of the network. A typical installation would require a 120 -ohm resistor across the transmit/receive terminals (19 and 21) of the last controller in the network and the converter box or serial card. Pullup and pull-down resistors may be needed to maintain the correct voltage during the idle state.

NOTE: For more information about communicating with Watlow controllers, go to www.watlow.com and download the Data Communications Reference: Electronic User's Manual. It is located under Literature, User's Manuals, English and search on data communications reference.

Wiring Example

WARNING:
To avoid potential electric shock and damage to property and equipment, use National Electric Code (NEC) safety practices when wiring and connecting this unit to a power source and to electrical sensors or peripheral devices. Failure to do so could result in injury or death.

WARNING:

Install high- or low-temperature-limit control protection in systems where an overtemperature fault condition could present a fire hazard or other hazard. Failure to install temperature-limit control protection where a potential hazard exists could result in damage to equipment and property.

Figure 3.9-System wiring example.

Chapter Four Navigation and Software

Keys and Displays

This chapter explains keys, displays and navigation skills, and presents charts showing how to accomplish basic tasks, including setting up the Custom Menu, which is unique to the Series 96 . You'll also find a complete software map.

Figure 4.1 - Series 96 keys and displays.

Navigating the Series 96

Choose a page (Operation, Setup or Factory) and press its key sequence. The page appears in the lower display.

- Operation Page: Press $\boldsymbol{\square}$ and keys together for 3 seconds.

- Setup Page: Press $\boldsymbol{\square}$ and $\mathbf{~ k e y s}$ together for 6 seconds.

- Factory Page: Press Θ and $\boldsymbol{\infty}$ keys together for 6 seconds.

- Home Page: From anywhere, press the \odot key.

Press $\boldsymbol{\square}$ or to find a specific menu in a page. The menu appears in the upper display and the page remains in the lower display.
Press © to enter the list of paramenters in the menu displayed. The menu's parameters appear in the lower display and the values in the upper. To go backward through the parameter list press © and \mathbf{O} together.
Press $\boldsymbol{\triangle}$ or to select a value, either alpha or numeric.
Press (a) to set the value and go to the next parameter.

96 Process 1 Value
96 Set Point Value， Remote Set Point Value or Percent Output Value 96 Custom Menu＊＊．．． $P 1$
Program Menu＊
（see pg．7．1）

Operations Page
 THOn Monitor Menu

OPEr Operations Page
Pre Process 2＊＊
Pcnt Percent Output
rPSP Ramping Set Point＊＊
E $5 E$ Event Input Status
USEr User Menu
OPEr Operations Page
（ $-\Gamma 7$ Auto－Manual Operations Mode＊＊
Rut Auto－tune
RE SP Auto－tune Set Point
SPC Set Point 2＊＊
（E SP Event Set Point＊＊
$L-r$ Local or Remote Mode＊＊
［RL Calibration Offset

P Id I PID 1 Menu

OPE Operations Page
Pb Propband 1
It Integral 1
rE Reset 1
dE Derivative 1
r R Rate 1
br5 Burst 1
［E Cycle Time 1
hy5 1 Hysteresis 1
db Dead Band 1

```
P IdC PID 2 Menu
OPER Operations Page
Pb ट] Propband 2
It 己 Integral 2
TE C) Reset 2
dE ट Derivative 2
\GammaR C Rate 2
br52 Burst }
[t 2] Cycle Time 2
hy52 Hysteresis 2
db ट Dead Band 2
RL\GammaT Alarm Menu
OPEr Operations Page
RCLO Alarm 2 Low
ACh Alarm 2 High
R3LO Alarm 3 Low
R3h , Alarm 3 High
84LO Alarm 4 Low
R4h Alarm 4 High
*Added if ramping version of controller
is selected (96_-
```

\qquad

``` \(-A A \_\)＿）．
**Removed if ramping version of con-
troller is selected (96____-AA_).
```

Setup Page
inP input 1 Menu
SEE Setup Page
SEn 1 Sensor Type
In I Input Type 1

$r L$	Range Low 1
$r h$	

rh Range High 1
dE［ I Decimal 1
FEr I Input Software Filter 1
InPD Input 2 Menu SEE Setup Page
In 2 Input 2＊＊
rl 2 Range Low $2^{* *}$
rh 2 Range High 2＊＊
CRLC Calibration Offset $2^{* *}$
EFn Event Function E Cn Event Condition
R65P Abort Set Point＊
Out Output 1 Menu
SEE Setup Page
Ot Output 1
Prel Process Type 1
OUEC Output 2 Menu
SEE Setup Page
Ot 2 Output 2
Prç Process Type 2
RE Y C Alarm Type 2
Rhy A Alarm Hysteresis 2
LALC Latching 2
（5IL2）Silencing 2
［5．d2］Alarm Active Sides 2
L9c2）Alarm Logic 2
RㄱuC Alarm Annunciation 2
OUE 3 Output 3 Menu
SEE Setup Page
Ot 3）Output 3
RE 33 Alarm Type 3
Ahy3）Alarm Hysteresis 3
［RE3）Latching 3
［5IL3］Silencing 3
5．d3）Alarm Active Sides 3
L9c3 Alarm Logic 3
Rnu3）Alarm Annunciation 3
OuE4 Output 4 Menu
SEE Setup Page
Ot 4 Output 4
RE 44 Alarm Type 4
Rhy4 Alarm Hysteresis 4
LRE L Latching 4
5 IL 4 Silencing 4
5.14 Alarm Active Sides 4

L9c4 Alarm Logic 4
Rnu4 Alarm Annunciation 4
Rout Analog Output 4
Prc4 Process Type 4
$A \quad$ h Analog Output High
A Lo Analog Output Low
ACRL Analog Output Offset
bRUd Baud Rate
Rddr Address
Note：What you see depends on the options and settings included in
your controller．

9L6L Global Menu
SEE Setup Page
Un it Units Type
$[-F C$ or F
Err Input Error Latching
FR IL Failure Mode＊＊
लクAn Manual Default Power＊＊
PLSP Power Limit Set Point
PL A High Power Limit Above
PL b High Power Limit Below
r P Ramping Mode＊＊
rP 5 Ramp Scale＊＊
rRtE Ramp Rate＊＊
OPLP Open Loop Detect
PLYP Program Type＊

Factory Page

［USt Custom Menu＊＊
Fcty Factory Page

$P 1$
$P L$
$P 3$
$P 4$
$P 5$
$P 6$
$P 7$
$P 8$
$P 9$
$P 10$
$P 11$
$P 12$
$P 13$
$P 14$
$P 15$
$P 16$

LOC Lockout Menu
Fct Factory Page
5P Set Point Lock
Pro 9 Program Menu Lock＊
［u5t Custom Menu Lock＊＊
OPE Operations Page Mode
SEE Setup Page Lock
［RL Calibration Menu Lock
d 1月9 Diagnostics Menu
Fcty Factory Page
FTdL Model Number
dREE Date of Manufacture
Sn 1 Serial Number 1
SnC Serial Number 2
Soft Software ID Number
Ity2 Input Type 2 －
$r E_{u}$ Software Revision
OtY 1 Output 1 Hardware
OLYC Output 2 Hardware
Oty3 Output 3 Hardware
Ot 34 Output 4 Hardware
tout Test Output
d 15P Test Displays
hrES High Resolution
AR7b Ambient Temperature
Rcnt Ambient A－D Counts
cat I Channel 1 A－D Counts
cnt Channel 2 A－D Counts
tSht Communications Test／ Troubleshooting
$\lfloor\operatorname{LnE}$ Line Frequency
The Factory Page includes calibration parameters that are not necessary for everyday use of the controller．

Basic navigation for new users

Use this example task to learn how to use the keys and displays. For more information about the control features available in the Series 96, see Chapter Five. For a table of all parameters and values, see Chapter Six.

Configure the controller

To configure the controller to suit your application, go to the Setup Page, enter the menus and set the parameters for the system, its inputs and outputs.

Do this Press these keys You'll see*

1	Go to the Setup Page from the Home Page.	OUp-arrow and DDown-arrow keys for 6 seconds.	After 3 seconds the Operations Page appears in the lower display; after 6 seconds the Setup Page appears in the lower display. A menu is in the upper display.	$\begin{array}{\|l\|} \hline \ln P \text { i } \\ \hline 5 E E \\ \hline \end{array}$
2	Choose a menu to enter.	OUp-arrow key.	The Setup Page remains in the lower display while menu names appear in the upper display.	$\begin{array}{\|l\|} \hline \ln P 2 \\ \hline 5 E E \\ \hline \end{array}$
3	Go to a parameter.	©Advance key.	The menu's parameters appear in the lower display and the values appear in the upper display. (Note: When you enter a menu, the display changes. Instead of the Setup Page and menu, you see parameter and value.)	$\begin{aligned} & \hline O F F \\ & \hline \ln 2 \\ & \hline \end{aligned}$
4	Choose a value.	OUp-arrow key, until you reach the desired value.	Values appear in the upper display when the parameter is in the lower display.	$\begin{array}{ll} E & i n \\ \ln 2 \end{array}$
5	Set a value and go on to the next parameter.	(9)Advance key (when the chosen value is displayed).	You will see the chosen value in the upper display. After pressing the Advance key, the next parameter appears in the lower display, with one of its values in the upper display. Values auto-enter after 5 seconds.	$\begin{aligned} & \operatorname{non} E \\ & E F n \end{aligned}$

Summary To make a selection or choice: Press ©Up-arrow key or ©Down-arrow key.
To move or change location in Press ©Advance key or ©Home/Infinity key. a page or menu:
*What you see depends on the options included in your controller.

Chapter Five Features

The System

Custom Menu (patented)

The Custom Menu provides you with a shortcut to monitor, tune or change the parameter values that you use most often. You can go directly to the Custom Menu in the Home Page by pressing (© . This provides a fast and convenient way to monitor and change settings.
You can create your own Custom Menu with as many as 16 of the active parameters from the list below. When a parameter is placed in the Custom Menu it is accessible through both the Custom Menu and its original menu. If you change a parameter in the Custom Menu it is automatically changed in its original menu. If you change a parameter in its original menu it is automatically changed in the Custom Menu.
If you do not assemble a Custom Menu, four default parameters will automatically appear in the Custom Menu.
To change the list of parameters in the Custom Menu, press both the (\square) and \odot keys for 6 seconds. This will take you to the Factory Page. The Custom Menu [$\mathbb{U} S t$ is the first menu on the Factory page. Press the (9) key once to go to the first selection in the menu. The parameter choices will appear in the top display and the selection number will appear in the bottom display. Use the \mathbf{O} or the $\boldsymbol{0}$ key to change the selected parameter in the top display. If you do not want a parameter to appear for that location, select non ε. To change the other 15 selections, press (a) to select a place in the menu, P to P I6, in the bottom display and use the $\mathbf{0}$ or the $\boldsymbol{\square}$ key to change the parameter selected in the top display.
$C U S E$
F

Figure 5.1 - Parameters available for the Custom Menu (*default selections).

Note: The Custom Menu will not appear if the ramping software option has been ordered (96XX-XXXX-AAXX).

Auto-tune

Auto-tuning allows the controller to explore the responsiveness of the system to determine an effective set of parameters for PID control. To do this it crosses an auto-tune set point several times, then controls at the normal set point using the new parameters.
Use Auto-tune Set Point RE SP (User Menu) to select the temporary set point, as a percentage of the normal set point, that the controller will tune to.
Initiate or cancel the auto-tune process with Initiate Auto-tune Rut (User Menu).
In heat-only or cool-only modes the only option is tunE.
In heat/cool or cool/heat modes there are three tuning options:
tunE tunes both heat and cool at the same time. This is appropriate if the system typically operates with both heat and cool contributing, such as in an environmental chamber.
P, d tunes just PID set 1. This is appropriate for tuning the heat of an extruder application in the endothermic mode.

P,dट] tunes just PID set 2. This is appropriate for tuning the cool set of an extruder application in the exothermic mode.

Figure 5.2a Auto-tuning.
CAUTION: Choose an auto-tune set point value that will protect your product from possible damage from overshoot or undershoot during the auto-tuning oscillations. If the product is sensitive, carefully select the auto-tune set point to prevent product damage.

Power Limit

A high side power limit and low side power limit set the maximum output power within two ranges.
A low side power limit limits the output to a percentage of the maximum output power while the process temperature or value is below the power limit set point.
The high side power limit limits the output to a percentage of the maximum output power while the process temperature or value is above the power limit set point.
The power limits work the same way in a cooling applications, but the negative values are converted to absolute (positive) values for determining whether the range is below or above the power limit set point.
The low side power limit can be viewed or changed with High Power Limit Below PL b (Global Menu).
The high side power limit can be viewed or changed with High Power Limit Above PL A (Global Menu).

The power limit set point can be viewed or changed with Power Limit Set Point PLSP (Global Menu).
The actual output power can be viewed with Percent Output Pcnt (Monitor Menu).

Figure 5.2b Power limits.

Input

Calibration Offset

Calibration offset allows a device to compensate for an inaccurate sensor, lead resistance or other factors that affect the input value. A positive offset increases the input value, and a negative offset decreases the input value.
The input 1 offset value can be viewed or changed with Calibration Offset 1 [RLI (User Menu).

Figure 5.3a Calibration offset

Filter Time Constant

A time filter smooths an input signal by applying a first-order filter time constant to the signal. Either the displayed value or both the displayed and control values can be filtered. Filtering the displayed value makes it easier to monitor. Filtering the signal may improve the performance of PID control in a noisy or very dynamic system.
View or change the Input 1 time filter with Filter Time Constant 1 FEr \boldsymbol{I} (Input 1 Menu). A positive value affects only the viewed values. A negative value affects both the viewed and control values.

Figure 5.3b Filtered and unfiltered input signals.

Sensor Selection

You need to configure a controller to match the input device, which is normally a thermocouple, RTD or process transmitter. When you select an input device, the controller automatically sets the input linearization to match the sensor. It also sets high and low limits, which in turn limit the range-high and range-low values.

Use Sensor Type 1 SEn 1 and Input 1 In 1 (Input 1 Menu) to select the appropriate sensor for Input 1.

Range Low and Range High

The controller constrains the set point to a value between range high and range low. Range high cannot be set higher than the sensor high limit or lower than range low. Range low cannot be set lower than the sensor low limit or higher than range high.
Use Set Point 1 [P I (Home Page), Range Low 1 rl 1 and Range High 1 rhid (Input 1 Menu) to select or view values for the corresponding Input 1 parameters.

Figure 5.4a Sensor ranges.

Event Input

With an event input an operator can perform certain operations on a system by opening or closing a switch or applying a dc logic signal to the controller. This feature can add convenience, safety or security to a system.
Use Event Input Status [E St (Monitor Menu) to read the state of the event input parameter.
Use Event Function $\mathbb{E} \boldsymbol{F}_{\boldsymbol{n}}$ (Input 2 Menu) to select how an event will affect the system.
none Events will not affect the system.
Use Event Condition [E (Input 2 Menu) to select what condition will trigger an event.
Lo Low generates an event while the voltage is low (switch closed).
h, High generates an event while the voltage is high (switch open).
$r, 5 E$ Rise changes the event state when the voltage changes from low to high.
FRLL Fall changes the event state when the voltage changes from high to low.
SP Switch to the event set point.
AOFF Turn off control outputs and disable alarms.
COFF Turn off control outputs.
LOC Lock out key board.
($-\Gamma \overline{\mathrm{C}}$ Switch to manual mode.**
tung Initiate an auto-tune.
RL Clear an alarm.
SLOL Lock out everything except primary set point (auto or manual). If selected and if a profile is not running (non-ramping mode) will lock the user out of all parameters except set point and event outputs.
LU'E Wait-for event input*
PRuS Pause*
FiL P Profile 1*
FILC] Profile 2*
hold Hold*
R65P abort set point*

Retransmitting a Remote Set Point

The retransmit feature allows an output to retransmit an analog signal that can serve as an input variable for another device. The signal may serve as a remote set point for another controller or it could be used as input for a chart recorder to document system performance over time.
With the remote set point feature a set point can be received from another device or controller. This flexibility allows the output from one controller to control the set point of other controllers for chaining or multi-zone applications.
To use a remote set point a Series 96 must be equipped with Input 2 hardware (96 _ 1 - _ _ _ - _ _ _ _).

Zone 1

To use the retransmit feature, a Series 96 must come equipped with a Universal Retransmit board installed in output 4 (96 _ _ _ _ _ M - _ _ _). Select the output scaling with Analog Output Range Low \& 10 and Analog Output Range High $\boldsymbol{\beta}$ h (Output 4 Menu). Set an offset for the output range with Analog Output Offset R[AL (Output 4 Menu). For example: If you want to retransmit set point 50°

Select the value that will be represented by Output 4 with Analog Output Selection Rout (Output 4 Menu).

OFF retransmit not active.
Proc retransmits the process value.
$5 P$ retransmits the set point.
Pcnt retransmits the percent power output.

Zones 2 and 3

To scale the remote set point input signal, set the set point value for the lowest Input 2 signal with
$r \operatorname{L2}$ (Input 2 Menu) and the value for the highest Input 2 signal with $r \boldsymbol{H C}$ (Input 2 Menu). For example, if you want $4-20 \mathrm{~mA}$ to represent a 50° to 250° set point, set $r \mathcal{L}$ to 50 and $r \boldsymbol{H C}$ to 250 . As the Input 2 signal varies between 4 and 20 mA , the remote set point value will vary between 50° and 250°.
Use the Local-Remote parameter $L-\boldsymbol{r}$ (User Menu) to switch between the local L and remote \boldsymbol{r} set point.

Figure 5.5a Retransmitting a remote set point.
Note: Remote set point input option is not available if the ramping option has been ordered (96XX-XXXX-AAXX).

Control Methods

On/Off Control

On/off control switches the output either full on or full off, depending on the input, set point and hysteresis values. The hysteresis value indicates the amount the process value must deviate from the set point to turn on output. Increasing the value decreases the number of times the output will cycle. Decreasing hysteresis improves controllability. With hysteresis set to 0 the process value would stay closer to the set point, but the output would switch on and off more frequently, causing "chattering."
Set Proportional Band $1 \mathrm{~Pb} \quad \mathrm{f}$ (PID 1 Menu) to 0 to set the controller to on/off control mode. Set the Output 1 hysteresis with Hysteresis 1 hYS 1 (PID 1 Menu).

Figure 5.5b On/off control for cooling and heating.

Proportional Control

Some processes need to maintain a temperature or process value closer to the set point than an on/off control can provide. Proportional control provides closer control by adjusting the output when the temperature or process value is within a proportional band. When the value is in the band, the controller adjusts the output based on how close the process value is to the set point: the closer to set point the lower the output. This is similar to backing off on the gas pedal of a car as you approach a stop sign. It keeps the temperature or process value from swinging as widely as it would with a simple on/off control. However, when a system settles down, the temperature or process value tends to "droop" short of the set point.
With proportional control the output power level equals (set point minus process value) divided by propband.

Proportional plus Integral (PI) Control

The droop caused by proportional control can be corrected by adding integral (reset) control to the system. When the system has settled down the integral (reset) value is tuned to bring the temperature or process value closer to the set point. Integral (reset) determines the speed of the correction. However, this may increase the overshoot that occurs at startup or when the set point is changed. Too much integral (reset) action will make the system unstable.
Integral (reset) is cleared when the process value is outside of the proportional band.
Reset is measured in repeats per minute. A low reset value causes a slow integrating action.
Integral is measured in minutes per repeat (the inverse of reset). A low integral value causes a fast integrating action.
View or change the Output 1 integral or reset value with Integral 1 It 1 or Reset 1 rE I (PID 1 Menu). Integral appears if Units Type Un it (Global Menu) is set to 5 I. Reset appears if Un , t is set to US.

The PID 1 proportional band can be viewed or changed with Propband $1 \times \mathrm{Pb} /$ (PID 1 Menu).

Figure 5.6a Proportional control.

Integral Value Equivalent Reset Value

1 minute
2 minutes $\quad 0.5$ repeats per minute
3 minutes $\quad 0.33$ repeats per minute
4 minutes $\quad 0.25$ repeats per minute
Table 5.6 - Converting between integral and reset values.

Figure 5.6b Proportional plus integral control.

Proportional plus Integral plus Derivative (PID) Control

Use derivative (rate) control to minimize the overshoot in a PI-controlled system. Derivative (rate) adjusts the output based on the rate of change in the temperature or process value. Too much derivative (rate) will make the system sluggish.
Rate action is active only when the process value is within twice the proportional value from the set point.
View or change the Output 1 derivative or rate with
 Derivative appears if Units Type Un , \boldsymbol{E} (Global Menu) is set to Si. Rate appears if Un , t is set to US.

Figure 5.7a PID control.

Dual PID

In an application with one output assigned to heating and another assigned to cooling, each will have a separate set of PID parameters and separate dead bands. The heating parameters take effect when the process temperature is lower than the set point and the cooling parameters take effect when the process temperature is higher than the set point.
PID 1 parameters apply to Output 1; PID 2 parameters apply to Output 2. View or change PID 1 and PID 2 parameters in the PID 1 and PID 2 menus (Operations Page).

Figure 5.7b Dual PID.

Dead Band

In a dual PID application the dead bands above and below the set point can be used to save energy and wear on an application by maintaining a process temperature within an acceptable range. Shifting the effective cooling set point and heating set point keeps the two systems from fighting each other.
Proportional action ceases when the process value is within the dead band. Integral action continues to bring the process temperature to the set point. When the value of the dead band is zero, the heating element becomes active when the temperature drops below the set point, and the cooling element switches on when the temperature exceeds the set point.
The dead band for Output 1 can be viewed or changed with Dead Band 1 db I (PID 1 Menu). The dead band for Output 2 can be viewed or changed with Dead Band 2 db ट] (PID 2 Menu).

Figure 5.7c Cooling dead band.

Burst Fire

Burst firing provides even output power with the lowest level of noise generation (RFI). Burst fire is the preferred method for controlling a resistive load, providing a very short time base for longer heater life.
The controller determines when the ac sine wave will cross the 0 -volts point, then switches the load on or off only at this point, minimizing RFI.
The burst fire feature for Output 1 can be turned on or off with Burst Fire 1 br 51 (PID 1 Menu). The burst fire feature for Output 1 requires either switched dc (96 _ _-C _ _ _-_ _ _) or solid-state relay (96 _ _-K _ _ _ - _ _ _).
The burst fire feature for Output 2 can be turned on or off with Burst Fire 2 br S己 (PID 2 Menu). The burst fire feature for Output 2 requires either switched dc ($96{ }_{-}{ }_{-}$- C _ _-_ _ _) or solid-state relay (96_ _- $\bar{K}_{\left.------_\right) . ~}^{\text {- }}$

Figure 5.8a Burst fire.

Ramp to Set Point

Ramping protects materials and systems that cannot tolerate rapid temperature changes. The value of the ramp rate is the maximum degrees per minute or hour that the system temperature can change.
Select when ramping is active with Ramping Mode rP (Global Menu).
OFF ramping not active.
Strt ramp at startup.
StPE ramp at startup or when the set point changes.
Select whether the rate is in degrees per minute or hour with Ramp Scale rP 5 (Global Menu). Set the ramping rate with Ramp Rate rREE (Global Menu).

Figure 5.8b Ramping to set point.

Note: The Ramping Mode will not appear if the ramping software option has been ordered (96XX-XXXX-AAXX).

Alarms

An alarm takes some action, usually notifying an operator, when the process temperature leaves a defined range. A user can configure how and when an alarm is triggered and whether it turns off automatically when the alarm condition is over. The alarm examples below are for Output 2.

Alarm Set Points

The alarm high set point defines the temperature that will trigger a high side alarm. The alarm high set point must be higher than the alarm low set point and lower than the high limit of the sensor range.

Alarm Hysteresis

Modbus Register \#720 r/w; values: (1-9999).
Alarm hysteresis is a zone inside each alarm set point. This zone is defined by adding the hysteresis value to the alarm low set point or subtracting the hysteresis value from the alarm high set point.
An alarm state is triggered when the process value reaches the alarm high or alarm low set point. Alarm hysteresis defines how far the process must return into the normal operating range before the alarm can be cleared.
The alarm hysteresis value for Output 2 can be viewed or changed with Hysteresis 2 hY5 (Output 2 Menu).

Process or Deviation Alarms

A process alarm uses one or two absolute set points to define an alarm condition.
A deviation alarm uses one or two set points that are defined relative to the control set point. High and low alarm set points are calculated by adding and/or subtracting offset values from the control set point. coIf the set point changes, the window defined by the alarm set points automatically change with it.

The alarm low set point defines the temperature that will trigger a low side alarm. The alarm low set point must be lower than the alarm high set point and higher than the low limit of the sensor range.
Process or deviation alarm set points for Output 2 can be viewed or changed with Alarm 2 High $\boldsymbol{A C h}$. and Alarm 2 Low R2Lo (Alarm Menu).

Figure 5.9a Alarm settings.

Alarm 2 Type $\boldsymbol{\text { AE Y D (Output }} 2$ Menu) allows you to view or change whether the Output 2 alarm will function as a process or deviation alarm.
The alarm deviation value of Output 2 can be viewed or changed with Alarm 2 High $\boldsymbol{A C h}$, and Alarm 2 Low A己LO (Alarm Menu).

Alarm Latching

Modbus Register \#721 r/w; values: No (0), Yes (1). A latched alarm will remain active after the alarm condition has passed. It can only be deactivated by the user. An alarm that is not latched will deactivate automatically when the alarm condition has passed.
Alarm 2 Latching LAEC] (Output 2 Menu) allows you to view or change whether the Output 2 alarm will latch. A latched alarm condition that has been corrected can be reset by pressing the \odot infinity key.

Figure 5.9bí Alarm latching.

Alarm Silencing

Modbus Register \#722 r/w; values: No (0), Yes (1). Alarm silencing has two uses:

1. It is often used to allow a system to warm up after it has been started up. With alarm silencing on, an alarm is not triggered when the process temperature is initially lower that the alarm low set point. The process temperature has to enter the normal operating range beyond the hysteresis zone to activate the alarm function.
2. Alarm silencing also allows the operator to disable the alarm output while the controller is in an alarm state. The process temperature has to enter the normal operating range beyond the hysteresis zone to activate the alarm output function.
If a Series 96 output is functioning as a deviation alarm, the alarm is silenced when the set point is changed, until the process value re-enters the normal operating range. Alarm Silencing 2 SILC (Output 2 Menu) allows you to view or change whether alarm silencing is on.

Errors

Open Loop Detect

Modbus Register \#210 r; values: Clear (0), Error (1). Open loop detect can alert the user of trouble on the input or output side of the control loop. It only works when the controller is operating with PID control. An open loop error is triggered when 100 percent power is applied at the control output for a period of time equal to the setting of integral (or the inverse of the reset value) without the input registering a 5° $\left({ }^{\circ} \mathrm{F}\right.$ or ${ }^{\circ} \mathrm{C}$) change.

If Alarm Annunciation 2 R $\boldsymbol{\text { ® C D (Output }} 2 \mathrm{Menu}$) is set to YES, the Output 2 indicator light will remain on and an alarm message will appear in the display, even though the alarm output is silenced.

Figure 5.10 - Alarm silencing.

System Errors (error number in top display, error message in bottom display)

Modbus Register \#209 r; (values in parenthesis below).
Refer to appendix, page A.2, in back of manual for troubleshooting tips about error codes.

M	Er 11 (11) Error 11 indicates new software has
[R「7 malfunction.	Soft been installed.
Er 5 (5) Error 5 indicates nonvolatile memory	[r IL (12) Error 12 indicates that calibration data
$E E \subset S$ checksum error.	[RL is corrupted.
Er 6 (6) Error 6 indicates a ROM malfunction.	[$\operatorname{rr} 13$ (13) Error 13 indicates an analog-to-digital
ropt	Rtad timeout.
Er 7 (7) Error 7 indicates a hardware failure.	[$r_{\text {r } 14}$ (14) Error 14 indicates a serial EEPROM
hird	EEhd time-out.
Er 8 (8) Error 8 indicates a module error.	[r 15 (15) Error 15 indicates a new unit.
Plug	nelud
Er 9 (9) Error 9 indicates a configuration error.	Er 16 (16) Error 16 indicates an EEPROM invalid
cnfg	Rddr address.
[10 (10) Error 10 indicates a module has been	
chn 9 changed.	Errors continued on next page.

Input Errors (error number in top display, percent output in bottom display)

Modbus Register \#101 r; (values in parenthesis below).
Err 1 (1) Error 1 indicates the input is too low to measure.
Errc] (2) Error 2 indicates the input is under the sensor range.
Err3] (3) Error 3 indicates the input is over the sensor range.
Errl (4) Error 4 indicates the input is too large to measure.
No error $=(0)$

Bumpless Transfer

When the sensor opens (fails), the controller switches from automatic to manual operation. If bumpless transfer is active when the sensor fails, the control output (or outputs) will remain stable - a bumpless, or smooth, transition.
If the Failure Mode FA IL (Global Menu) is set to bumpless GPLS and the process has stabilized at a ± 5 percent output power level for 2 minutes prior to the sensor break, and that power level is less than 75 percent, the controller switches to manual operation at the last automatic power level. If these conditions are not met, the output goes to 0 percent power (output disabled).
If Failure Mode is set to manual Γ MRの, the Series 96 switches to manual operation at the percent power value of Manual Default Power [CRA (Global Menu). Manual operation provides openloop control of the outputs from a range of - 100 percent to 100 percent output. The Series 96 allows a
negative output value only when Output 1 or 2 is set to cool.

When the controller returns to closed-loop control, it uses the previous set point value.

Figure 5.11 - Bumpless transfer.
Note: The bumpless transfer feature will not appear if the ramping software option has been ordered (96XX-XXXXAAXX).

Communications

A Series 96 controller can also be programmed and monitored by connecting it with a personal computer or programmable logic controller (PLC) via serial communications. To use this communications option, a Series 96 must be equipped with a EIA/TIA 485 (96 _ _ _ _ _ U - _ _ _ _) or EIA/TIA 232 (96 _ _ - _ _R - _ _ _ _) communications board installed for Output 4.
Use of the EIA/TIA 485 requires that your PC or PLC use the EIA/TIA 485 interface in half duplex. Purchase an interface converter which communicates in half duplex when using a PC or PLC with an EIA/TIA 232 communications port. You must use the EIA/TIA 485 option to communicate with more than one control. This option directly supports up to 32 devices on a network.
To view or change controller settings with a personal computer, you need to run software that uses the Modbus RTU protocol to read or write to registers in
the controller. See Chapter Six for the Modbus registers. These registers contain the parameter values that determine how the controller will function and the values that reflect the current input and output values of the system.
Decimal points are not sent or received in Modbus. To determine decimal point locations, read the decimal parameter dE [I. For example, 127.5 degrees is read or written as 1275 degrees with the decimal parameter set to 0.0.
Parameters relating to communications appear in the Output 4 Menu (Setup Page). Match the Baud Rate bRUd to that of the computer and select an Address Rddr for the Series 96.

NOTE: For more information about communicating with Watlow controllers, go to www.watlow.com and download the Data Communications Reference: Electronic User's Manual. It is located under Literature, User's Manuals, English and search on data communications reference.

6
 Chapter Six Parameters

Home Page

The resting－state display shows one of the following sets of data，depending on controller setup．The first prompt appears in the top display，the second in the bottom．

Display	Parameter	Range （Modbus Value）	Default	Modbus Register read／write	Conditions for Parameters to Appear
$\begin{array}{r} 96 \\ \hline 100 \end{array}$	Process 1 Set Point 1 Monitor the Process 1 value and change the Set Point values．	Range Low 1 to Range High 1 OFF Off		$\begin{aligned} & 100 \mathrm{r} \\ & 300 \mathrm{r} / \mathrm{w} \end{aligned}$	Active：Always Active if the event set point is not active and Local or Remote Mode（User Menu）is set to L（local）or Auto－Manual Operation Mode（User Menu）is set to Ruto（automatic）． OFF will appear when slewing below the $r \mathcal{L}$ i］value．
$\begin{array}{r} 96 \\ 200 \end{array}$	Process 1 Remote Set Point＊＊ Monitor the Process 1 value and Remote Set Point values．	Range Low 1 to Range High 1		$\begin{aligned} & 100 \mathrm{r} \\ & 202 \mathrm{r} \end{aligned}$	Active：Always Active if the remote set point is active and Local or Remote Mode $L-r$（User Menu）is set to \square r（remote）and Auto－Manual Operation Mode （User Menu）is set to Ruto （automatic）．
$\begin{array}{r} 96 \\ \hline 50.0 \end{array}$	Process 1 Event Set Point＊＊ Monitor the Process 1 value and Event Set Point values．	Range Low 1 to Range High 1		$\begin{aligned} & 100 \mathrm{r} \\ & 202 \mathrm{r} \end{aligned}$	Active：Always Active if Event Function $E \quad F_{n}$ （Input 2 Menu ）is set to $5 \boldsymbol{S P}$ （event set point），an event con－ dition exists and Auto－Manual Operation Mode（User Menu）is set to Ruto（automatic）．
$\begin{array}{r} 96 \\ \hline 50.0 \end{array}$	Process 1 Manual Set Point＊＊ Monitor the Process 1 value and change manual set point value．	Range Low 1 to Range High 1 heat modes： 0.0 to 100.0 cool modes：－100．0 to 0.0 heat／cool modes： -100.0 to 100.0		$\begin{aligned} & 100 \mathrm{r} \\ & 310 \mathrm{r} / \mathrm{w} \end{aligned}$	Active：Always Active if Auto－Manual Operation Mode（User Menu）is set to Mクタの（manual），or if there is an error．

The parameters selected in the Custom Menu（Factory Page）will appear here．

NOTE：Refer to Chapter 7 of this manual for information on parameters for creating ramp and soak profiles in Ramping versions of the Series 96 ．
NOTE：To see how all the pages，menus and parameters are grouped，refer to the inside back cover of this manual．
NOTE：For more information about how parameter settings affect the controller＇s operation，see Chapter Five，Features．

Operations Page

The Operations Page contains five menus：

Display	Parameter	Range （Modbus Value）	Default	Modbus Register read／write	Conditions for Parameters to Appear
OPER	Operations Page Select Go to an operations menu．	CTOn Monitor USEr User P，di PID 1 P，dट PID 2 （if output 2 is Active） ALCT Alarm（if any alarms are active）			Active if Operations Page Mode Lock（Lockout Menu／Factory Page）is not set to $h \mathbf{d E}$ ．
f7on OPER	Monitor Menu Operations Page	RTon Monitor： comms value（0）			
$\operatorname{Pr} 2$	Process 2＊＊ Monitor the process 2 value．			105 r	Active if Input 2 （Input 2 Menu ） is not set to OFF or E in and Operations Page Lock （Lockout Menu）is not set to h idE．
Pcnt	Percent Output Monitor the control output power level．			103 r	Active if Operations Page Lock （Lockout Menu）is not set to h idE．
rPSP	Ramping Set Point＊＊ Monitor the ramping set point．			203 r	Active if Ramping Mode（Global Menu）is not set to $O F F$ and Operations Page Lock（Lockout Menu）is not set to $h, d E$ ．
$E S t$	Event Input Status Monitor the event input status．	$\begin{aligned} & \operatorname{truE} \text { true (1)*** } \\ & \text { FRLS false (0)*** } \end{aligned}$		201 r	Active if $\boldsymbol{E} \boldsymbol{F}_{\boldsymbol{n}}$（Input 2 Menu ） is not set to none and Opera－ tions Page Lock（Lockout Menu）is not set to h de．
$\begin{aligned} & \text { USEr } \\ & \text { OPEr } \end{aligned}$	User Menu Operations Page				
－ 1 －ri］	Auto－Manual＊＊ Operation Mode Select whether the controller is under auto or manual con－ trol．	Ruto Auto mode（0） กクタn Manual mode (1)	Auta（0）	301 r／w	Active if Operations Page Lock （Lockout Menu）is not set to h ode．
Aut	Auto－tune Initiate or cancel an auto－tune．	DFF off or cancel an auto－tune in progress （0） tune initiate an auto－tune（1） P，di Set 1 only（2） P，d己 Set 2 only（3）	OFF（0）	$305 \mathrm{r} / \mathrm{w}$	Active if Auto－Manual Operation Mode（User Menu）is set to Ruto（automatic）and Opera－ tions Page Lock（Lockout Menu）is not set to h odE．
＊＊These parameters are removed if the ramping software option has been ordered（96＿－＿＿＿＿－AA＿＿）．					
＊＊＊Numbers in parentheses are the ordinals／enumerators for use in Modbus communications．					

Display	Parameter	Range (Modbus Value)	Default	Modbus Register read/write	Conditions for Parameters to Appear
ALSP	Auto-tune Set Point Set the auto-tune set point as a percent of the currently active set point.	50 to 150	90	$304 \mathrm{r} / \mathrm{w}$	Active if Operations Page Lock (Lockout Menu) is not set to hidE.
$E \quad 5 P$	Event Set Point2** Set the set point when the event input is active as defined by Event Condition.	Range Low 1 to Range High 1	$75^{\circ} \mathrm{F}, 24^{\circ} \mathrm{C}$	$306 \mathrm{r} / \mathrm{w}$	Active if Input 2 (Input 2 Menu) is set to \boldsymbol{E} in (event input), E F \cap is set to $5 P$, and Operations Page Lock (Lockout Menu) is not set to h $\mathbf{h} \boldsymbol{d E}$.
592	Set Point 2** Set the boost set point.	Range Low 1 to Range High 1	$75^{\circ} \mathrm{F}, 24^{\circ} \mathrm{C}$	$319 \mathrm{r} / \mathrm{w}$	Active if output 2 is present (not 96 \qquad -_A \qquad), both Output 1 (Output 1 Menu) and Output 2 (Output 2 Menu) are set to either hERE or [COOL and Operations Page Lock (Lockout Menu) is not set to $h, d E$.
$L-r$	Local or Remote Mode** Set the mode to local or remote set point.	\square \llcorner local (0) remote (1)	$\square(0)$	$316 \mathrm{r} / \mathrm{w}$	Active if Input 2 (Input 2 Menu) is not set to OFF, Input 2 is not set to \boldsymbol{E} in (event input) and Operations Page Lock (Lockout Menu) is not set to h idE.
CRL	Calibration Offset Set the input 1 calibration offset.	-1999 to 9999	0	$605 \mathrm{r} / \mathrm{w}$	Active if Operations Page (Lockout Menu) is not set to $\boldsymbol{h} \boldsymbol{\prime} \boldsymbol{d E}$.
$\begin{aligned} & P, d i \\ & O P E r \end{aligned}$	PID 1 Menu Operations Page				
Pb 1	Propband 1 Set the proportional band for PID control.	0° to 9999° If $\boldsymbol{P b}$ is set to 0 operates in on/off mode.	$25^{\circ} \mathrm{F}, 14^{\circ} \mathrm{C}$	$500 \mathrm{r} / \mathrm{w}$	Active if Operations Page Lock (Lockout Menu) is not set to h idE.
It 1	Integral 1 Set the integral time in minutes for output 1 .	0.00 to 99.99 minutes per repeat	0.00 (0)	$501 \mathrm{r} / \mathrm{w}$	Active if Propband 1(PID 1 Menu) is not set to $\quad \boldsymbol{0}$, Units Type (Global Menu) is set to 51 and Operations Page Lock (Lockout Menu) is not set to h idE.
TE 1	Reset 1 Set the reset time in repeats/minute for output 1.	0.00 to 99.99 repeats per minute	0.00 (0)	$502 \mathrm{r} / \mathrm{w}$	Active if Propband 1(PID 1 Menu) is not set to \qquad 0), Units Type (Global Menu) is set to \qquad US and Operations Page Lock (Lockout Menu) is not set to h ode.

NOTE: For more information about how parameter settings affect the controller's operation, see Chapter Five, Features.

Display	Parameter	Range (Modbus Value)	Default	Modbus Register read/write	Conditions for Parameters to Appear
dE I	Derivative 1 Set the derivative time in minutes for output 1 .	0.00 to 9.99 minutes	$0.00 \text { (0) }$	$503 \mathrm{r} / \mathrm{w}$	Active if Propband 1(PID 1 Menu) is not set to $\quad 0$, Units Type (Global Menu) is set to 51 and Operations Page Lock (Lockout Menu) is not set to $h, d E$.
RR	Rate 1 Set the rate time in minutes for output 1.	0.00 to 9.99 minutes	0.00 (0)	$504 \mathrm{r} / \mathrm{w}$	Active if Propband 1(PID 1 Menu) is not set to $\quad \boldsymbol{0}$, Units Type (Global Menu) is set to US and Operations Page Lock (Lockout Menu) is not set to $h, d E$.
brst	Burst 1 Select burst fire mode for output 1 .	$\begin{array}{r} \text { no no (0) } \\ \text { YES yes (1) } \end{array}$	no (0)	$509 \mathrm{r} / \mathrm{w}$	Active if Propband 1 (PID 1 Menu) is not set to $\quad 0$, and Operations Page Lock (Lockout Menu) is not set to $h, \boldsymbol{d E}$, and if output 1 is equipped for a solid-state relay ($96 \mathrm{~A} \mathrm{~A}_{-}$-K \qquad or switched dc (96A _-C \qquad) and high voltage power supply (96A __ _.)
$\text { [t } \quad 1$	Cycle Time 1 Set the cycle time in seconds for output 1 .	Relay: 5.0 to 60.0 (50 to 600) Solid State: 0.1 to 60.0 (1 to 600)	Determined by output type.	$506 \mathrm{r} / \mathrm{w}$	Active if Propband 1 (PID 1 Menu) is not set to 0 , Burst 1 (PID 1 Menu) is set to no, output 1 is not a pro- _ _) and Operations Page Lock (Lockout Menu) is not set to h idE.
hY5	Hysteresis 1 Sets the switching hysteresis for output 1.	1 to 9999	$3^{\circ} \mathrm{F}, 2^{\circ} \mathrm{C}$	$507 \mathrm{r} / \mathrm{w}$	Active if output 1 is not a process type (not 96 _ _-F _ _ _-_ _ _), Propband 1 (PID 1 Menu) is set to 0 and Operations Page Lock (Lockout Menu) is not set to $h, d E$.
$d b \quad 1$	Dead Band 1 Set point shift for output 1 control.	0 to 9999	0	$505 \mathrm{r} / \mathrm{w}$	Active if output 2 is present (not 96 \qquad - A \qquad), one output is set to hERE, another is set to [OOL and Operations Page Lock (Lockout Menu) is not set to $h, d E$.

NOTE: For more information about how parameter settings affect the controller's operation, see Chapter Five, Features.

Display	Parameter	Range (Modbus Value)	Default	Modbus Register read/write	Conditions for Parameters to Appear
$\begin{aligned} & \text { P, de } \\ & \text { OPEr } \end{aligned}$	PID 2 Menu Operations Page				
Pb 2	Propband 2 Set the proportional band for output 2 .	$0^{\circ} \text { to } 9999^{\circ}$ If $\mathrm{Pb} \quad$ 己 is set to 0 operates in on/off mode.	$25^{\circ} \mathrm{F}, 14^{\circ} \mathrm{C}$	$510 \mathrm{r} / \mathrm{w}$	Active if one output is set to heat and the other to cool and Operations Page Lock (Lockout Menu) is not set to h $\boldsymbol{d E}$ and Heat-Cool Mode.
it 2	Integral 2 Set the integral time in minutes for output 2 .	0.00 to 99.99 minutes per repeat (0 to 9999)	0.00 (0)	$511 \mathrm{r} / \mathrm{w}$	Active if Propband 2 (PID 2 Menu) is not set to 0 , Units Type (Global Menu) is set to 51 and Operations Page Lock (Lockout Menu) is not set to h idE.
TE 2	Reset 2 Set the reset time in repeats/minutes for output 2.	0.00 to 99.99 repeats per minute (0 to 999)	0.00 (0)	$512 \mathrm{r} / \mathrm{w}$	Active if Propband 2 (PID 2 Menu) is not set to 0 , Units Type (Global Menu) is set to US and Operations Page Lock (Lockout Menu) is not set to h de .
dE 2	Derivative 2 Set the derivative time in minutes for output 2 .	$\begin{aligned} & 0.00 \text { to } 9.99 \text { minutes } \\ & (0 \text { to } 999) \end{aligned}$	0.00 (0)	$513 \mathrm{r} / \mathrm{w}$	Active if Propband 2 (PID 2 Menu) is not set to 0 , Units Type (Global Menu) is set to 51 and Operations Page Lock (Lockout Menu) is not set to h idE.
FR 2	Rate 2 Set the rate time in minutes for output 2.	$\begin{aligned} & 0.00 \text { to } 9.99 \text { minutes } \\ & \quad(0 \text { to } 999) \end{aligned}$	0.00 (0)	514 r/w	Active if Propband 2 (PID 2 Menu) is not set to $\quad 0$, Units Type (Global Menu) is set to US and Operations Page Lock (Lockout Menu) is not set to h de .
brse	Burst 2 Select burst fire mode for output 2.	$\begin{aligned} & \text { no no (0) } \\ & \hline \text { YES yes (1) } \end{aligned}$	no (0)	$519 \mathrm{r} / \mathrm{w}$	Active if Propband 2 (PID 2 Menu) is not set to $\quad 0$, and Operations Page Lock (Lockout Menu) is not set to $h, \boldsymbol{d E}$, and if Output 2 is equipped for a solid-state relay (96A _-K \qquad _ _ _ _) or switched dc (96A _-C \qquad or voltage power supply option (96A \qquad _ _.)
[E 2	Cycle Time 2 Set the cycle time in seconds for output 2 .	```Relay: 5.0 to 60.0 (50 to 600) Solid-state: 0.1 to 60.0 (1 to 600)```	Relay: 10.0 (100) Solid-state: $1.0 \text { (10) }$	$516 \mathrm{r} / \mathrm{w}$	Active if Propband 2 (PID 2 Menu) is not set to 0 , Burst 2 (PID 2 Menu) is set to no, output 2 is not a process ($\operatorname{not} 96$ _ _ - F _ _-_ _ _ _) $^{\text {) }}$ and Operations Page Lock (Lockout Menu) is not set to h idE.

NOTE: For more information about how parameter settings affect the controller's operation, see Chapter Five, Features.

NOTE: For more information about how parameter settings affect the controller's operation, see Chapter Five, Features.

Display	Parameter	Range (Modbus Value)	Default	Modbus Register read/write	Conditions for Parameters to Appear
A3h.	Alarm 3 High Set the high alarm set point for output 3.	Process: Alarm 3 Low+1 to high limit of selected sensor range Deviation: 0 to 9999	Process: high limit of selected sensor range Deviation: 999	$341 \mathrm{r} / \mathrm{w}$	Active if Output 3 (Output 3 Menu) is set to $A L$ (Alarm), Alarm Sides 3 (Output 3 Menu) is set to Lo, output 3 is present (96 _ _-_ D _-_ _ _ _) and Operations Page Lock (Lockout Menu) is not set to $h, d E$.
R4LO	Alarm 4 Low Set the low alarm set point for output 4.	Process: low limit of selected sensor range to Alarm 4 High-1 Deviation: -1999 to 0	Process: low limit of selected sensor range Deviation: -999	none****	Active if Output 4 (Output Menu 4) is set to AL (Alarm), Alarm Sides 4 (Output Menu 4) is not h , output 4 is a relay (96 _ _-_ _ D-_ _ _ _) and Operations Page Lock (Lockout Menu) is not set to hidE.
R4h .	Alarm 4 High Set the high alarm set point for output 4.	Process: Alarm 4 Low+1 to high limit of selected sensor range Deviation: 0 to 9999	Process: high limit of selected sensor range Deviation: 999	none****	Active if Output 4 (Output Menu 4) is set to AL (Alarm), Alarm Sides 4 (Output Menu 4) is not set to Lo, output 4 is a relay (96 \qquad D- \qquad and Operations Page Lock (Lockout Menu) is not set to h idE.

[^0]
Setup Page

The setup page contains seven menus.

*These parameters are added if the ramping software option has been ordered (96 _ _ - _ _ _ - AA _ _) .
**These parameters are removed if the ramping software option has been ordered (96 _ _ - _ _ _ - AA _ _) .
***Numbers in parentheses are the ordinals/enumerators for use in Modbus communications.
NOTE: For more information about how parameter settings affect the controller's operation, see Chapter Five, Features.

Display	Parameter	Range (Modbus Value)	Default	Modbus Register read/write	Conditions for Parameters to Appear
$r L \quad 1$	Range Low 1 Set the input range low. This setting is the lowest value that the set point can have.	See Specifications in the Appendix for sensor ranges and defaults.	See Specifications in the Appendix for sensor ranges and defaults.	$602 \mathrm{r} / \mathrm{w}$	Active if Setup Page Lock (Lockout Menu) is not set to $h, d E$.
$\text { rh } 1$	Range High 1 Set the input range high. This setting is the highest value that the set point can have.	See Specifications in the Appendix for sensor ranges and defaults.	See Specifications in the Appendix for sensor ranges and defaults.	$603 \mathrm{r} / \mathrm{w}$	Active if Setup Page Lock (Lockout Menu) is not set to $h, d E$.
$d E[1$	Decimal 1 Sets the position of the decimal point for input readings.	If Set Sensor Type is RTD or thermocouple (excluding R, S or B thermocouple):	0	$606 \mathrm{r} / \mathrm{w}$	Active if Setup Page Lock (Lockout Menu) is not set to $h, d E$.
Ftr	Input Software Filter 1 Set the filter time for the input, in seconds. This smoothes out a rapidly changing input signal. Positive values affect the monitor readings only. Negative values affect both the monitor readings and the control values.	$\begin{aligned} & -60.0 \text { to } 60.0(-600 \text { to } \\ & 600) \end{aligned}$	$\begin{aligned} & 0(0)[1.0(10) \\ & \text { if } d E[\text { is } \\ & \text { set to } 0.0] . \end{aligned}$	$604 \mathrm{r} / \mathrm{w}$	Active if Setup Page Lock (Lockout Menu) is not set to $\boldsymbol{h} \boldsymbol{\circ} \boldsymbol{d E}$.
$\begin{gathered} \ln P D \\ S E t \end{gathered}$	Input 2 Menu Setup Page				
$\operatorname{in} 2$	Input 2 Sets the input type parameter of input 2.	$\begin{array}{\|l\|l} \hline \text { OFF } & \text { off: }(0) \\ \hline \text { E In } & \text { event input: (1) } \\ \hline 4-20 & 4-20 \mathrm{~mA}(2)^{* *} \\ \hline 0-20 & 0-20 \mathrm{~mA}(3)^{* *} \\ 0-5 & 0-5 \mathrm{~V}=(\mathrm{dc})(4)^{* *} \\ \hline 1-5 & 1-5 \mathrm{~V}=(\mathrm{dc})(5)^{* *} \\ 0-10 & 0-10 \mathrm{~V}=(\mathrm{dc})(6)^{* *} \end{array}$	OFF (0)	611 r/w	Active if input 2 hardware is present (96 _1 _-_ _ _ _ -_ _ _ _) and Setup Page Lock (Lockout Menu) is not set to h de.

NOTE: For more information about how parameter settings affect the controller's operation, see Chapter Five, Features.

Display	Parameter	Range (Modbus Value)	Default	Modbus Register read/write	Conditions for Parameters to Appear
$\begin{array}{rl} r l & 2 \end{array}$	Range Low 2** Set the input range low. This setting is the value Pr Pr will read when Input 2 is at its low range.	-1999 to rhc Range High 2	rL1	$612 \mathrm{r} / \mathrm{w}$	Active if input 2 hardware is present (96 _1 _-_ _ _ _ - _ _ _) and in 己 is not set to E in or OFF and Setup Page Lock (Lockout Menu) is not set to h idE.
$\text { rh } 2$	Range High 2** Set the input range high. This setting is the value Pr Pr will read when Input 2 is at its high range.	rL2 9999	rh1	$613 \mathrm{r} / \mathrm{w}$	Active if input 2 hardware is present (96 _1 _-_ _ _ _ - _ _ _), and in 2 is not set to E in or OFF and Setup Page Lock (Lockout Menu) is not set to $h, \boldsymbol{d} E$.
[ALC	Calibration Offset 2** Set the input calibration offset. This allows you to compensate for lead resistance, sensor errors and other factors.	$\text { -1999 to } 9999$	0	615 r/w	Active if input 2 hardware is present (96 _1 _-_ _ _ _ -_ _ _ _), and in $己$ is not set to E in or OFF and Setup Page Lock (Lockout Menu) is not set to h idE.
$E F n$	Event Function Select the event function.	non \mathcal{B} no function (0) SP switch to event set point (1)** ROFF turn off control outputs and disable alarms (2) [OFF] turn off control outputs (3) LDC lock out key board (4) $\boldsymbol{\beta}-\boldsymbol{\Gamma} \boldsymbol{\eta}$ switch to manual mode (5)** tunE initiate an auto-tune (6) AL clear alarm (7) SLOC lock out everything except primary set point (auto or manual). If selected and if a profile is not running (non-ramping mode) will lock the user out of all parameters except set point and event outputs. (8) LU'E wait-for event input (9)* PRUS pause (10)* F,L D profile 1 (11) * F , L Z profile 2 (12) * hold hold (13)* RbSP abort set point (14)*	none (0)	1060 r/w	Active if input 2 hardware is present (96 _1 _-_ _ _ _ -_ _ _ _) and Input 2 (Input 2 Menu) is set to [E in (Event Input) and Setup Page Lock (Lockout Menu) is not set to h $\boldsymbol{h} \boldsymbol{d E}$. * UU'E, PRUS), FiL i, F, LC), hold, and RbSP are added if ramping version of the controller is selected (96 \qquad -AA__.) ** $5 \boldsymbol{S P}$ and $\boldsymbol{\theta - \Gamma 7}$ are removed if ramping version of the controller is selected (96 \qquad -AA_.)

Display	Parameter	Range (Modbus Value)	Default	Modbus Register read/write	Conditions for Parameters to Appear
E Cn R65p	Event Condition Select the condition to trigger an event. Abort Set Point	```LO low (0): h , high (1) r,SE rise (2) FRLL fall (3)``` OFF, Range Low 1 to Range High 1 (-32768)	LO (0) $75^{\circ} \mathrm{F}, 24^{\circ} \mathrm{C}$	$1061 \text { r/w }$ 1211 r/w	Active if input 2 hardware is present (96 _1 _-_ _ _ - -_ _ _ _), Input 2 (Input 2 Menu) is set to $E \quad$ in (Event Input), Event Function (Input 2 Menu) is not set to nonE and Setup Page Lock (Lockout Menu) is not set to $h, d E$. Active if $E F_{n}$ is set to R65P.
Out 1 SEE Ot I Pre	Output 1 Menu Setup Page Output 1 Select whether the control output will control for heating or cooling. Process 1 Type Sets process 1 output type.	$h E R E$ heat (0) $C O O L$ cool (1) $4-20$ $4-20 \mathrm{~mA}(0)$ $0-20$ $0-20 \mathrm{~mA}(1)$ $0-5$ $0-5 \mathrm{~V}=(\mathrm{dc})(2)$ $1-5$ $1-5 \mathrm{~V}=(\mathrm{dc})(3)$ $0-10$ $0-10 \mathrm{~V}=(\mathrm{dc})(4)$		$700 \text { r/w }$ 701 r/w	Active if Setup Page Lock (Lockout Menu) is not set to $h \quad \mathbf{\prime} E$. Active if output 1 is equipped for a process (96 _ _-F _ _ _-_ _ _) and Setup Page Lock (Lockout Menu) is not set to h dE.
$\begin{aligned} & \text { Out2 } \\ & \text { SEt } \\ & \text { Ot ? } \end{aligned}$	Output 2 Menu Setup Page Output 2 Select output 2 function.	OFF off (0) hERE heat (1) $C O O L$ cool (2) RL alarm (3) EUnt event (4)*	$0 F F(0)$	$717 \text { r/w }$	Active if output 2 is present (not 96 \qquad A \qquad) and Setup Page Lock (Lockout Menu) is not set to h dEE. *Event output is added if ramping version of the controller is selected (96____-AA_.)
Prez	Process 2 Type Sets output 2 process type.	$\begin{array}{\|r\|l} \hline 4-20 & 4-20 \mathrm{~mA}(0) \\ 0-20 & 0-20 \mathrm{~mA}(1) \\ 0-5 & 0-5 \mathrm{~V}=(\mathrm{dc})(2) \\ 1-5 & 1-5 \mathrm{~V}=(\mathrm{dc})(3) \\ 0-10 & 0-10 \mathrm{~V}=(\mathrm{dc})(4) \end{array}$	$4-20(0)$	$718 \text { r/w }$	Active if output 2 is equipped for and Setup Page Lock (Lockout Menu) is not set to $h, d E$.
ALYC	Alarm 2 Type Select alarm type. A process alarm responds when the temperature leaves a fixed range. A deviation alarm responds when the temperature deviates from the set point by a set number of degrees.	Proc process alarm (0) dE deviation alarm (1)	Proc (0)	719 r/w	Active if output 2 is present, but is not process type (not 96 _ A \qquad or 96 \qquad F _ - - _), Output 2 (Output 2 Menu) is set to \square RL (Alarm) and Setup Page Lock (Lockout Menu) is not set to h d $\boldsymbol{d E}$.

$* * * *$ Output 1 and Output 2 menu prompts cannot have range selections set to identical control modes, e.g. Heat/Heat

NOTE: For more information about how parameter settings affect the controller's operation, see Chapter Five, Features.

Display	Parameter	Range (Modbus Value)	Default	Modbus Register read/write	Conditions for Parameters to Appear
8hyd	Alarm Hysteresis 2 Sets the switching hysteresis for the alarm output. This defines a band on the inside of the alarm set point. When the process temperature is in this band, the alarm state will not change.	1 to 9999	$3^{\circ} \mathrm{F}, 2^{\circ} \mathrm{C}$	720 r/w	Active if output 2 is present, but is not process type (not 96 A \qquad or 96 \qquad _ _ _ _), Output 2 (Output 2 Menu) is set to $A L$ (Alarm) and Setup Page Lock (Lockout Menu) is not set to h dE.
LALC	Latching 2 Enable Alarm 2 Latching.	no no action (0) YES latching enabled (1)	no (0)	721 r/w	Active if output 2 is present, but is not a process type (not 96 _-_ A _ _-_ _ _ _ or 96 _ _-_ F_ _-_ _ _), Output 2 (Output 2 Menu) is set to \quad RL (Alarm) and Setup Page Lock (Lockout Menu) is not set to h $\boldsymbol{h} \boldsymbol{d} E$.
SILC]	Silencing 2 Enable Silence 2.	no no action (0) YES silence alarm (1)	no (0)	722 r/w	Active if output 2 is present, but is not a process type (not 96 _-_ A _ _- _ _ _ or 96 _ _-_ F_ --- - _), Output 2 (Output 2 Menu) is set to \quad AL (Alarm) and Setup Page Lock (Lockout Menu) is not set to h d $\boldsymbol{d E}$.
5,d2]	Alarm Active Sides 2 Select which side or sides the alarm set points can be programmed for.	```both both (0) h , high (1): high side only LO low (2): low side only```	both (0)	723 r/w	Active if output 2 is present, but is not a process type (not 96 _-_ A _ _-_ _ _ or 96 _ _- F_ -- - _ _), Output 2 (Output 2 Menu) is set to \quad AL (Alarm) and Setup Page Lock (Lockout Menu) is not set to h d \boldsymbol{C}.
L9c2	Alarm Logic 2 Select alarm 2 output condition in the alarm state.	AL 0 alarm condition de-energizes output (fail-safe operation) (0) RL [alarm condition energizes output (1)	RL O (0)	724 r/w	Active if output 2 is present, but is not a process type (not 96 _-_ A _ _-_ _ _ or 96 _ _-_ F_ --_ _ _), Output 2 (Output 2 Menu) is set to AL (Alarm) and Setup Page Lock (Lockout Menu) is not set to h de.
Anue	Alarm Annunciation 2 Select alarm 2 annunciation option.	$\begin{array}{r} \text { no no (0) } \\ \text { YES yes (1) } \end{array}$	YES (1)	725 r/w	Active if output 2 is present, but is not a process type (not 96 _-_ A _ _- _ _ _ or 96 _ _-_ F_ --- - _), Output 2 (Output 2 Menu) is set to AL (Alarm) and Setup Page Lock (Lockout Menu) is not set to h $\boldsymbol{d} E$.

NOTE: For more information about how parameter settings affect the controller's operation, see Chapter Five, Features.

Display	Parameter	Range (Modbus Value)	Default	Modbus Register read/write	Conditions for Parameters to Appear
$\begin{gathered} \text { Nut } 3 \\ \hline S E t \end{gathered}$	Output 3 Menu Setup Page				
Ot 3	Output 3 Select type of output 3.	$\begin{array}{\|l} \text { OFF off (0) } \\ \text { RL } \operatorname{alarm}(1) \\ \text { Eunt event (2)* } \end{array}$	OFF (0)	734 r/w	Active if output 3 present (96 _ _ D _-_ _ _ _), Output 3 (Output 3 Menu) is set to AL (Alarm) and Setup Page Lock (Lockout Menu) is not set to h idE. *Event output is added if ramping version of the controller is selected (96 \qquad -AA_.)
ALY3	Alarm 3 Type Select alarm 3 type.	Proc process alarm (0) dE deviation alarm (1)	Proc (0)	$736 \mathrm{r} / \mathrm{w}$	Active if output 3 present (96 \qquad D), Output 3 (Output 3 Menu) is set to RL (Alarm) and Setup Page Lock (Lockout Menu) is not set to h do.
Rhy3	Alarm Hysteresis 3 Set the switching hysteresis for the alarm output. This defines a band on the inside of the alarm set point. When the process temperature is in this band, the alarm state will not change.	1 to 9999	$3^{\circ} \mathrm{F}, 2^{\circ} \mathrm{C}$	737 r/w	Active if output 3 is present (96 _-_ _ D _-_ _ _ __), Output 3 (Output 3 Menu) is set to RL (Alarm) and Setup Page Lock (Lockout Menu) is not set to $h, d E$.
L8t3	Latching 3 Enable Alarm 3 Latching.	no no action (0) YES latching enabled (1)	no (0)	738 r/w	Active if output 3 is present (96 _-_ _ D _-_ _ _ _), Output 3 (Output 3 Menu) is set to RL (Alarm) and Setup Page Lock (Lockout Menu) is not set to h $\boldsymbol{h} \boldsymbol{d}$.
5123	Silencing 3 Enable Silence 3.	no no action (0) YES silence 3 enabled (1)	no (0)	739 r/w	Active if output 3 is present (96 _-_ _ D _-_ _ _ _), Output 3 (Output 3 Menu) is set to RL (Alarm) and Setup Page Lock (Lockout Menu) is not set to hidE.
5.03	Alarm Active Sides 3 Select alarm 3 side option.	$\begin{aligned} & \text { both both (0) } \\ & \text { h } \text { high (1) } \\ & \text { Lo low (2) } \end{aligned}$	both (0)	$740 \mathrm{r} / \mathrm{w}$	Active if output 3 is present (96 _-_ _ D _-_ _ _ _), Output 3 (Output 3 Menu) is set to AL (Alarm) and Setup Page Lock (Lockout Menu) is not set to h , dE.

NOTE: For more information about how parameter settings affect the controller's operation, see Chapter Five, Features.

Display	Parameter	Range (Modbus Value)	Default	Modbus Register read/write	Conditions for Parameters to Appear
$19 \subset 3$ Anu3	Alarm Logic 3 Select alarm 3 output condition in the alarm state. Alarm Annunciation 3 Select alarm 3 annunciation option.	AL \mathbf{O} alarm condition de-energizes output (fail-safe operation) (0) AL [alarm condition energizes output (1) $\begin{array}{r} \text { no no (0) } \\ y E S \text { yes (1) } \end{array}$	RL O (0) YES (1)	741 r/w 742 r/w	Active if output 3 is present (96 _-_ _ D _-_ _ _ _), Output 3 (Output 3 Menu) is set to RL (Alarm) and Setup Page Lock (Lockout Menu) is not set to $h, d E$. Active if output 3 is present (96 \qquad D - \qquad), Output 3 (Output 3 Menu) is set to AL (Alarm) and Setup Page Lock (Lockout Menu) is not set to h idE.
$\begin{gathered} 0 u t^{\prime} 4 \\ 5 E t \end{gathered}$	Output 4 Menu Setup Page				
Ot 4	Output 4 Select output 4 type.	$\begin{aligned} \text { OFF } & \text { off } \\ \text { AL } & \text { alarm } \\ \text { Eunt } & \text { event* } \end{aligned}$	OFF	none****	Active if output 4 is equipped for a relay (96 \qquad D- \qquad and Setup Page Lock (Lockout Menu) is not set to h d $\boldsymbol{d E}$. *Event output is added if ramping version of the controller is selected (96 \qquad -AA_.)
HEY4	Alarm 4 Type Select alarm 4 type.	Proc process alarm dE deviation alarm	Proc	none****	Active if output 4 is equipped for a relay (96 \qquad D- \qquad _), Output 4 (Output 4 Menu) is set to RL (Alarm) and Setup Page Lock (Lockout Menu) is not set to h $\boldsymbol{h} \boldsymbol{d}$.
8hy4	Alarm Hysteresis 4 Sets the switching hysteresis for the alarm output. This defines a band on the inside of the alarm set point. When the process temperature is in this band, the alarm state will not change.	1 to 9999	$3^{\circ} \mathrm{F}, 2^{\circ} \mathrm{C}$	none****	Active if output 4 is equipped for a relay (96 \qquad D \qquad _), Output 4 (Output 4 Menu) is set to AL (Alarm) and Setup Page Lock (Lockout Menu) is not set to h de.
LRE4	Latching 4 Enable alarm 4 latching.	no no action YES latching enabled	no	none****	Active if output 4 is equipped for a relay (96 \qquad --D- \qquad _), Output 4 (Output 4 Menu) is set to RL (Alarm) and Setup Page Lock (Lockout Menu) is not set to $h, d E$.

[^1]NOTE: For more information about how parameter settings affect the controller's operation, see Chapter Five, Features.

Display	Parameter	Range (Modbus Value)	Default	Modbus Register read/write	Conditions for Parameters to Appear
	Silencing 4 Enable Silence 4.	no no action YES silence 4 enabled	no	none****	Active if output 4 is equipped for a relay (96 \qquad -- _ D \qquad _), Output 4 (Output 4 Menu) is set to RL (Alarm) and Setup Page Lock (Lockout Menu) is not set to h dE.
5.84	Alarm Active Sides 4 Select alarm 4 side option.	both both h, high Lo low	both	none****	Active if output 4 is equipped for a relay (96 \qquad --D- \qquad), Output 4 (Output 4 Menu) is set to RL (Alarm) and Setup Page Lock (Lockout Menu) is not set to h dEE.
19.4	Alarm Logic 4 Select alarm 4 output condition in alarm state.	RL © alarm condition de-energizes output RL [alarm condition energizes output	QL 0	none****	Active if output 4 is equipped for a relay (96 \qquad --D- \qquad _), Output 4 (Output 4 Menu) is set to AL (Alarm) and Setup Page Lock (Lockout Menu) is not set to h $\boldsymbol{d} \boldsymbol{d}$.
Rnu 4	Alarm Annunciation 4 Select alarm 4 annunciation option.	$\begin{array}{r} \text { no no } \\ \text { YES yes } \end{array}$	YES	none****	Active if output 4 is equipped for a relay (96 _ _-_ _ D-_ _ _ _), Output 4 is Set to AL (Alarm) and Setup Page Lock (Lockout Menu) is not set to h ode.
Rout	Analog Output 4 Select Output 4 retransmit signal.	$\begin{aligned} & \hline \text { OFF not active } \\ & \hline \text { Prac process } \\ & \text { SP set point } \\ & \hline P \subset \cap E \text { percent power } \end{aligned}$	OFF	none****	Active if output 4 is equipped for retransmit (96 _ _-_ _ M_) and Setup Page Lock (Lockout Menu) is not set to h odE.
Pre4	Process 4 Type Set process 4 output type.	$\begin{array}{\|c\|c} \hline 4-20 & 4-20 \mathrm{~mA} \\ 0-20 & 0-20 \mathrm{~mA} \\ 0-5 & 0-5 \mathrm{~V}=(\mathrm{dc}) \\ \hline 1-5 & 1-5 \mathrm{~V}=(\mathrm{dc}) \\ 0-10 & 0-10 \mathrm{~V}=(\mathrm{dc}) \end{array}$	4-20	none****	Active if output 4 is equipped for retransmit (96 _ _-_ _ _ M _ _) and Rout (Analog Output 4) is not set to $O F F$ and Setup Page Lock (Lockout Menu) is not set to h $\boldsymbol{h} \boldsymbol{d}$.
A Lo	Analog Output Low Set analog output range low scaling.	-1999 to $\boldsymbol{\beta}$ h Analog Output High	Sensor type rL1	none****	Active if output 4 is equipped for retransmit (96 _ _-_ _ _ M_), Analog Output 4 (Output 4 Menu) is set to OFF and Setup Page Lock (Lockout Menu) is not set to h $\boldsymbol{h} \boldsymbol{d}$.
A h.	Analog Output High Set analog output range high scaling.	A Lo Analog Output Low to 9999	Sensor type rh1	none****	Active if output 4 is equipped for retransmit (96 _ _-_ _ _ M_), Analog Output 4 (Output 4 Menu) is set to OFF and Setup Page Lock (Lockout Menu) is not set to h $\boldsymbol{h} \boldsymbol{d}$.

Display	Parameter	Range (Modbus Value)	Default	Modbus Register read/write	Conditions for Parameters to Appear
ACAL	Analog Output Offset Set analog output offset.	-1999 to 9999	0	none****	Active if output 4 is equipped for retransmit (96 _ _-_ _ M_), Rout (Analog Output 4) is not set to OFF and Setup Page Lock (Lockout Menu) is not set to $h, d E$.
GRUd	Baud Rate Set communications baud rate.	1200 1200 2400 2400 4800 4800 9600 9600 19.20 19.2 K	9600	none****	Active if output 4 is equipped for communications (96 _ _-_ _ _ R-- - - - or or 96 \qquad U- \qquad and Setup Page Lock (Lockout Menu) is not set to h dE.
Rddr	Address Set communications address.	1 to 247	1	none****	Active if output 4 is equipped for communications (96 _ _-_ _ R_ - _ _ or or 96 \qquad U \qquad and Setup Page Lock (Lockout Menu) is not set to $h \cdot d E$.
Output 4 parameters cannot be changed with the Modbus interface.					
9LbL Global Menu 5EE Setup Page Un , t Units Type Select US or SI units of measurement.					
		$U 5$ propbands in degrees, reset and rate (1) 51 propbands in degrees, integral and derivative (2)	U5 (1)	$900 \mathrm{r} / \mathrm{w}$	Active if Setup Page Lock (Lockout Menu) is not set to $\boldsymbol{h} \boldsymbol{\prime} \boldsymbol{d E}$.
$[-F$	${ }^{\circ} \mathbf{C}$ or ${ }^{\circ} \mathbf{F}$ Select the temperature scale for the input. Converts all temperature parameters.	$\mathbf{O F}^{\circ}{ }^{\circ}$ Fahrenheit (0)	of (0)	901 r/w	Active if Sensor Type 1 (Input 1 Menu) is set to RTD or thermocouple and Setup Page Lock (Lockout Menu) is not set to h idE.
Err	Input Error Latching Select input error latching mode.	LRE latching (0) nLRE no latching (1)	nLRt (1)	607 r/w	Active if Setup Page Lock (Lockout Menu) is not set to $\boldsymbol{h} \boldsymbol{\prime} \boldsymbol{d E}$.
FA IL	Failure Mode** Select failure mode after errors.	$\begin{aligned} & \text { GPLS bumpless (0) } \\ & \text { חクRn manual (1) } \\ & \text { OFF off (2) } \end{aligned}$	$6 P L 5(0)$	$902 \mathrm{r} / \mathrm{w}$	Active if Setup Page Lock (Lockout Menu) is not set to h $\boldsymbol{h} \mathbf{d E}$.
CTAn	Manual Default Power** Select output power for manual mode.	$\begin{aligned} & \text { heat: } 0.0 \text { to } 100.0 \\ & (0 \text { to } 1000) \\ & \text { cool: }-100.0 \text { to } 0.0 \\ & (-1000 \text { to } 0) \\ & \text { heat/cool: }-100.0 \text { to } \\ & 100.0(-1000 \text { to } 1000) \end{aligned}$	0.0 (0)	$903 \mathrm{r} / \mathrm{w}$	Active if Failure Mode (Global Menu) is set to חクRn (manual) and Setup Page Lock (Lockout Menu) is not set to h $\boldsymbol{h} \boldsymbol{d}$.

*These parameters are added if the ramping software option has been ordered (96 \qquad
**These parameters are removed if the ramping software option has been ordered ($96_{-}{ }_{-}{ }_{-}{ }_{-}{ }_{-}-A A_{-}$) . NOTE: For more information about how parameter settings affect the controller's operation, see Chapter Five, Features.

Display	Parameter	Range (Modbus Value)	Default	Modbus Register read/write	Conditions for Parameters to Appear
PLSP	Power Limit Set Point Set point for power limits, $P \mathbf{P} \quad \boldsymbol{A}$ above this point, $P \mathbf{P} \quad b$ below.	$r \mathrm{~L} \quad$ Sensor Range Low $r \boldsymbol{h} \quad$ Sensor Range High	rh	713 r/w	Active if Setup Page Lock (Lockout Menu) is not set to $\boldsymbol{h} \mathbf{\prime} \boldsymbol{d E}$.
PL A	High Power Limit Above Set high power limit above the power limit set point.	0.0 to 100.0 (0 to 1000) Applies to heat or cool.	100.0 (1000)	714 r/w	Active if Setup Page Lock (Lockout Menu) is not set to $h \quad \mathbf{\prime} \boldsymbol{d E}$.
PL $\quad 6$	High Power Limit Below Set high power limit below the power limit set point.	0.0 to 100.0 (0 to 1000) Applies to heat or cool.	100.0 (1000)	715 r/w	Active if Setup Page Lock (Lockout Menu) is not set to h,dE.
$r P$	Ramping Mode** Set the single step ramp to set point mode.	$\begin{aligned} & \text { OFF off (0) } \\ & \text { Strt startup only (1) } \\ & \text { StPE startup or set } \\ & \text { point change (2) } \end{aligned}$	OFF (0)	1100 r/w	Active if Local or Remote Mode (User Menu) is not \qquad (remote set point is not active) and Setup Page Lock (Lockout Menu) is not set to $h, d E$.
TP 5	Ramp Scale** Set the single step ramp scaling in degrees per hour or minute.	$\begin{aligned} & \text { ח7 in minute (0) } \\ & \text { hour hour (1) } \end{aligned}$	¢7in (0)	1102 r/w	Active if Local or Remote Mode (User Menu) is not set to \square, Ramping Mode (Global Menu) is not set to OFF and Setup Page Lock (Lockout Menu) is not set to h $\boldsymbol{h} \boldsymbol{d}$.
rREE	Ramp Rate** Set the units or degrees set point ramp rate.	0.1 to 99.9 (1 to 999)	10.0 (1)	$1101 \mathrm{r} / \mathrm{w}$	Active if Local or Remote Mode (User Menu) is not set to \boldsymbol{r}, Ramping Mode is not set to OFF and Setup Page Lock (Lockout Menu) is not set to hidE.
OPLP	Open Loop Detect Turn the open loop detect feature on or off.	$\begin{array}{\|c\|} \hline \text { OFF off (0) } \\ \text { on (1) } \end{array}$	OFF (0)	904 r/w	Appears if Setup Page Lock (Lockout Menu) is not set to h idE.
PLYP	Program Type* Select whether the program type will be time based or rate based.		匕.10)	1208 r/w	Added if ramping version of the controller is selected (96 \qquad -AA_).

NOTE: For more information about how parameter settings affect the controller's operation, see Chapter Five, Features.

Factory Page

The factory page contains six menus:

Display	Parameter	Range (Modbus Value)	Default	Modbus Register read/write	Conditions for Parameters to Appear
Fcty	Factory Page Selection Choose factory menu to enter.	CUSE Custom Menu** LOC Lockout Menu diR9 Diagnostics Menu cin I Calibration 1 Menu cind Calibration 2 Menu** cout Calibration Menu			Active: Always
$\begin{aligned} & \text { CUSt } \\ & \text { Fcty } \\ & P \text { Pi } \end{aligned}$	Custom Menu** Factory Page to P 16 Custom Prompt number** (1 to 16) Choose an operations prompt to be in custom prompt slot.	none none (0) Pr己 Process 2 (1) Pcnt Percent Output (2) rPSP Ramping Set Point (3) E 5t Event Input Status (4) R-「7 Operation Mode (5) Rut Auto-tune (6) RE SP Auto-tune Set Point (7) SP2 Set Point 2 (8) E SP Event Set Point (9) L-r Local or Remote Mode (10) [RL] Calibration Offset (11) Pb 1 Propband 1 (12) it Integral 1 (13) dE Derivative 1 (14) rE \quad Reset 1 (15) CA Rate 1 (16) [E \quad Cycle Time 1 (17) db Dead Band 1 (18) Pb 2] Propband 2 (19) it 2 Integral 2 (20) dE ट Derivative 2 (21) (Continued Next Page)		$\begin{aligned} & 1400-1415 \\ & \mathrm{r} / \mathrm{w} \end{aligned}$	Active: Always

**These parameters are removed if the ramping software option has been ordered (96 \qquad AA _) .
NOTE: For more information about how parameter settings affect the controller's operation, see Chapter Five, Features.

Display	Parameter	Range (Modbus Value)	Default	Modbus Register read/write	Conditions for Parameters to Appear
SEE	Setup Page Lock Set the Setup Page lockout level.	$h, d E$ hide (0) chn9 change (1) rERd read only (2)	chn9 (1)	$1302 \mathrm{r} / \mathrm{w}$	Active: Always
[RL	Calibration Menu Lock Set the calibration menus lockout level.	h , dE hide (0) chn9 change (1) rERd read only (2)	chns (1)	1305 r/w	Active: Always
Pro9	Program Menu Lock* The lockout menu will allow the user to set different levels of user lockout for he program menu.	$h, d E$ hide (0) chnS change (1) rERd read only (2)	chn ${ }^{\text {a (1) }}$	1314 r/w	Active if ramping version of the controller is selected (96_- \qquad -AA_).
d 189 Diagnostics Menu Fcty Factory Page		Enter d 189 mode	(1789)	1512 w	
¢TJL	Model Number	96	96	0 r	Active: Always
	Read the model number of the controller.				
dREE	Date of Manufacture	0196 to 9999	none	5 r	Active: Always
	Displays date as WEEK:YEAR (WWYY).				
5 n 1	Serial Number 1	0 to 9999	none	1 r	Active: Always
	Read the first four digits of the serial number.				
5 C	Serial Number 2	0 to 9999	none	2 r	Active: Always
	Read the last four digits of the serial number.				
50FE	Software ID Number Read the software ID number.	0 to 9999	none	3 r	Active: Always

NOTE: For more information about how parameter settings affect the controller's operation, see Chapter Five, Features.

Display	Parameter	Range (Modbus Value)	Default	Modbus Register read/write	Conditions for Parameters to Appear
$r E_{u}$	Software Revision Read software revision number.	0.00 to 99.99	none	4 r	Active: Always
Ityd	Input 2 Hardware Enabled Read the input 2 hardware type.	nonk none (0) PrEE process event (5)	(0)	9 r	Active: Always
0 Ot	Output 1 Hardware Read the output 1 hardware type.	nonk none (0) $r E L Y$ relay (1) $55 r$ solid-state relay (2) dc dc (3) Proc process (4)	(0)	16 r	Active: Always
Oty2	Output 2 Hardware Read the output 2 hardware type.	$\mid n \circ \cap E$ none (0) $r E L Y$ relay (1) $5 S r$ solid-state relay (2) dc dc (3) Proc process (4)	(0)	17 r	Active: Always
	Output 3 Hardware Read the output 3 hardware type.	$\begin{aligned} & \text { nonE none (0) } \\ & \text { rELY relay (1) } \end{aligned}$	(0)	18 r	Active: Always
0 O44	Output 4 Hardware Read the output 4 hardware type.	nonE none (0) rELY relay (1) Proc process (4) 485 (6) 232 (7)	(0)	19 r	Active: Always
tout	Test Output Turns on specific output.	none none (0) out I output 1 (1) out ? output 2 (2) out 3 output 3 (3) out 4 output 4 (4) RLL all outputs (5)	nonk (0)	1514 r/w	Active: Must be in d 189 mode
d 15p	Test Display Test the indicator lights on the front panel.	OFF turn off the cyclic display test (0) on turn on the cyclic display test (1)	OFF (0)	$1513 \mathrm{r} / \mathrm{w}$	Active: Must be in d 189 mode
hres	High Resolution Displays high resolution input value.	$\begin{aligned} & -199.9 \text { to } 199.9 \\ & (-1999 \text { to } 1999) \end{aligned}$	none	1707 r	Active: Always

Display	Parameter	Range (Modbus Value)	Default	Modbus Register read/write	Conditions for Parameters to Appear
Qr7b	Ambient Temperature Read the ambient temperature in 0.1 degrees Fahrenheit.		none	1500 r	Active: Always
Acnt	Ambient A-D Counts Displays the raw ambient channel AD counts.		none	1501 r	Active: Always
cot 1	Channel 1 A-D Counts Displays the raw channel 1 A-D counts.		none	1504 r	Active: Always
cnt?	Channel 2 A-D Counts Displays the raw channel 2 A-D counts.		none	1505 r	Active: Always
tSht	Troubleshooting Helps solve problems with the controller.	$n \boldsymbol{n o}$ enables PID terms in custom menu Co $\boldsymbol{\eta}$ sends modbus packet every 1 sec- ond	P, d		Proportional term 205 Integral term 206 Derivative term 207
$L \ln E$	Line Frequency Displays the AC line frequency in Hz .		none	1515 r	Active: Always (Model 96A - available only with ac input.)
$F \in t y$	Calibration 1 Menu Factory Page	Enter di89 mode Enter \boldsymbol{C} in 1 mode	$\begin{aligned} & (1789) \\ & (1415) \end{aligned}$	$\begin{aligned} & 1512 \mathrm{w} \\ & 1600 \mathrm{w} \end{aligned}$	
rSt	Restore Factory Calibration Restore factory calibration. Does not affect operations and setup parameters.	$\begin{aligned} & \text { no no (0) } \\ & \text { YES yes (1) } \end{aligned}$	no (0)	1601 w	Active if Calibration Lock (Lockout Menu) is not set to $h \mathbf{r} \boldsymbol{d}$.
$d F L E$	Default Settings Restore default settings.	$\begin{gathered} \text { no no (0) } \\ \hline \text { YES yes (} 800 \text {) } \end{gathered}$	no (0)	1602 w	Active if Calibration Lock (Lockout Menu) is not set to h $\boldsymbol{h} \boldsymbol{d E}$.

NOTE: Complete calibration menus and parameters are explained at Watlow's web site, http://www.watlow.com/literature/prodtechinfo. Search on 96 calibration manual.

NOTE: For more information about how parameter settings affect the controller's operation, see Chapter Five, Features.

Chapter Seven Ramping

Program Menu Prompts

Entering the Program Menu: Press the © Advance key to enter the Program Menu while the program is on hold or not running.

Figure 7.1 - The Program Menu
Note: The Program Menu will only appear if the ramping software option has been ordered (96 \qquad -- $A A_{-}$).

Display	Parameter	Range (Modbus Value)	Default	Modbus Register read/write	Conditions for Parameters to Appear
Eunt	Event Outputs Manually change the event output status while the program is not running.		OFF (0)	1268 r/w	Active if hardware is present for Outputs 2,3 , or 4 and the parameters are set to Eunt. Selecting a number to appear will turn the respective event output on.
F,LE	File Represents the profile to be edited or viewed.	$\begin{array}{r} \text { ! } \\ \square \end{array}$	f(1)		
StEP	Step Represents the current step of the profile to be edited or viewed.	$\quad 1$ to 8	(1)		
5tyP	Step Type Select from four different step types.	SLPE Set Point (0) SoRH Soak (1) UL Jump Loop (2) End End (3)	End (3)	See p. 7.7	
Watlow	Series 96				Ramping $\quad 7.1$

Display	Parameter	Range (Modbus Value)	Default	Modbus Register read/write	Conditions for Parameters to Appear
StPt	Set Point Step				
$5 P$	Set Point Indicates ending set point value the controller ramps to during the set point step.	$\begin{array}{\|l} \hline \text { OFF } \\ \hline \text { L } ~(-32768) ~ \\ F H i \end{array}$	$75^{\circ} \mathrm{F} / 24^{\circ} \mathrm{C}$ or $$	See p. 7.7	Active: Always
Hour	Hour The number of hours, (plus Min and Sec parameters) equal the total step time to achieve the ending set point under the $5 \in 5 P$ step type.	0 to 99	0	See p. 7.7	Active if the value set for $P \in \mathcal{Y}$ is \qquad t or time based profile.
¢7,	Minutes The number of minutes, (plus Hour and Sec parameters) equal the total step time to achieve the ending set point under the $5 \boldsymbol{5} \boldsymbol{y} \boldsymbol{P}$ step type.	(0) to 59	0	See p. 7.7	Active if the value set for $P \in \mathcal{Y} P$ is \qquad t or time based profile.
SEL	Seconds The number of seconds, (plus Hour and Min parameters) equal the total step time to achieve the ending set point under the $5 \subset 5 P$ step type.	0 to 59	0	See p. 7.7	Active if the value set for $\boldsymbol{P} \boldsymbol{P} \boldsymbol{Y} \boldsymbol{P}$ is \qquad t. or time based profile.
CREE	Rate Indicates rate at which the set point changes in degrees per minute.	0.0 to $360.0{ }^{\circ} \mathrm{F}$ 0.0 to $200.0{ }^{\circ} \mathrm{C}$ 0.0 to 360.0 Units	0.0	See p. 7.7	Active if the value set for PとYP is rREE or rate based profile.
Eout	Event Outputs Selects whether the event output(s) are on or off during the program step.		OFF (0)	See p. 7.7	Active if hardware is present for Outputs 2, 3 or 4 and the parameters are set to Eunt. Selecting a number to appear will turn the respective event output on during the program step.

****Output 4 parameters cannot be changed with the Modbus interface.

Display	Parameter	Range (Modbus Value)	Default	Modbus Register read/write	Conditions for Parameters to Appear
508 H	Soak Step				
Hour	Hour The number of hours, (plus Min and Sec parameters) equal the total soak step time at set point under the SORH step type.	0 to 99	0	See p. 7.7	Always displayed in this menu.
97,	Minutes The number of minutes, (plus Hour and Sec parameters) equal the total soak step time at set point under the SORH step type.	0 to 59	0	See p. 7.7	Always displayed in this menu.
SEC	Seconds The number of seconds, (plus Hour and Min parameters) equal the total soak step time at set point under the SORH step type.	0 to 59	0	See p. 7.7	Always displayed in this menu.
Eout	Event Outputs Selects whether the event output(s) are on or off during the program step.		OFF (0)	See p. 7.7	Active if hardware is present for Outputs 2,3 , or 4 and the parameters are set to Eunt. Selecting a number to appear will turn the respective event output on during the program step.
LUE	Wait-for Event Input The program will not begin to decrement the soak time during the programmed step until the event input condition has been satisfied	OFF (0) 0 (1)	OFF (0)	See p. 7.7	Active if the parameter for Input 2 E F_{n} is set to LUE.
LudE	Wait-for Deviation Value The program will not begin to decrement the soak time during the programmed step until process value is equal to or within the wait-for deviation value setting.	OFF (-32768) \square to 99	OFF (-32768)	See p. 7.7	Always displayed in this menu.

Display Parameter	Range (Modbus Value)	Default	Modbus Register read/write	Conditions for Parameters to Appear
U'L Jump Loop Step				

How to Navigate with the Ramping Menus

	Pre-run Menu	Program Menu	Run Menu
Enter menu	Press the ©Infinity key.	Press the ©Advance key.	Press the ©Infinity key two times or one time if the profile indicator is flashing.
Scroll thru menu.	Press the $(\Im$ Advance key.	Press the ©Advance key.	Press the ©Advance key.
Change prompt values.	Press ©Up and ©Down arrow keys.	Press ©Up and ©Down arrow keys.	Menu is read only.
Exit menu.*	Press the ©Advance key repeatedly.	Press the ©Infinity key.	Press the ©Advance key repeatedly.

*Exit menu refers to returning back to the display of process value in the upper display and active set point value in the lower display. The ramping set point will be active while running a profile and the manual adjustable set point will be active when a profile is not running.
NOTE: For more information about how parameter settings affect the controller's operation, see Chapter Five, Features.

Pre-run and Run Menus

The Pre-run and Run menu prompts are only visible when in the Pre-Run or Run mode.

The Pre-run mode is entered by pressing the \oplus Infinity key one time while at the Home Page location. The profile indicator light flashes while in the Pre-run mode. The Pre-run menu consists of the [$F, L E, 5 \in E P$], $r E S U$ and prompts. The Pre-run menu allows the user to select a profile and step number to run or to resume running a profile. The Pre-run menu contains these three prompts and does not revolve around in a continuous loop. Pressing the © Advance key at the rESU prompt will not advance you back to the top of the Pre-run menu. If the ©Advance key is pressed at the rESU prompt, the user will exit out of the Pre-run menu and return to the display of process/current set point.
The Run mode is active when a program is running. The Run mode is entered by pressing the \odot Infinity key one time while in the Pre-run menu. The profile indicator light will be full on while in the Run mode. The $\boldsymbol{F}-5 \boldsymbol{E}$ file-step prompt is visible in the Run

Running a Series 96 Profile

1. You must be at the Home Page location before you can begin running a profile. Start your profile by entering the pre-run menu. Enter the pre-run menu by pressing the infinity key.
2. The profile indicator LED begins flashing. The upper display shows the file number to be run and the bottom display shows the $[\mathcal{F}, \mathcal{L}]$ parameter. Use the $\mathbf{O} \mathrm{Up}$ and $\boldsymbol{\square}$ Down arrow keys to select which profile number to run.
3. Press the \circlearrowleft Advance key, the upper display shows the step number to be run and the bottom display shows the StEP parameter. Use the $\mathbf{0} \mathrm{Up}$ and $\boldsymbol{0}$ Down arrow keys to select which step number to start ramping at.
4. Press the ©Infinity key again and the profile will start running. If not pressed within approximately one minute, the controller will automatically exit out of a pre-run mode. If the \odot Infinity key is pressed within one minute, the profile indicator LED will
menu and shows the current file and step number of the running profile. Other prompts in the Run menu show the target end set point, as well as status for time remaining, ramp rate, wait-for, and jump count
if relevant.
Pre-run Menu
File
StEP
rESU (File number - step number)

Run Menu

F-5t] File number - step number
EnSP End set point for step
Hour Hours remaining in step
C7 in Minutes remaining in step
$5 E_{c}$ Seconds remaining in step
rREE Ramp rate in minutes for step
LUE Wait-for event
LUdE Wait-for process deviation value selection for step
$E \cup[C$ Elapsed jump count for last jump step

Resume a Profile

To resume a halted profile, from the Home Page, press the \odot Infinity key once to enter the Pre-run Menu. Press the ©Advance key twice until the $r E S U$ parameter appears in the lower display. The lower display will show $r E S U$ and the upper display will show the file and step number that will be resumed (file-step). Press the \odot Infinity key again, the profile resumes, and the profile indicator LED is lit. You can only resume at the exact step you left off on. If you halt a running profile and make changes to the current step, you cannot resume the
change from flashing to being continually lit to indicate the profile is now running. The upper display shows the process value and the lower display will show the ramping set point or soak set point value.
5. You may step through the Run menu parameters with the (9) Advance key while the profile is running. The Run menu will show the file/step number, and what the parameters are set to. At any time, you may press the \odot Infinity key to stop the profile. To resume running the profile where it was stopped, press the \odot Infinity key once; the profile indicator LED begins flashing. Now, press the (9)Advance key repeatedly until the r $r E S U$ parameter appears in the lower display; once again, press the \oplus Infinity key and the profile resumes running. After the profile has ended, the profile indicator LED will turn off and the lower display will read OFF or the last profile step set point depending on the \boldsymbol{E} nd prompt setting.
profile. The rESU parameter only appears when a running profile has been halted.

To Run your profile... Press the ®Infinity key twice.
To Stop a running profile... Press the ©Infinity key once.
To Resume a halted profile... Press the ©Infinity key once, press the ©Advance key repeatedly until the $r E S U$ parameter appears in the lower display, and press the \oplus Infinity key.

Jump-loops

The Series 96 can jump forward or backwards at any step. You cannot jump-loop to the step that you are on.

In this example the program will execute steps 2 through 4 a total of 2 times. This includes the initial pass and the pass associated with the Jump Count of $1 / \mathcal{J} \quad$ I. Following the second pass the \square End End step (Step 6) will be executed and the program will end.

Your $\square \backslash[$ Jump Count can be any number from 0 to 255 . If you enter 0 , this will be an infinite loop and never progresses to Step 6.

When $\quad \mathcal{J F}$ Jump File is not set to the current program file, the profile may jump to any step of the other file.

The Wait-for Functions of the Soak Step

There are two wait-for functions. The first is LUE Wait-for Event. The profile will wait-for the programmed event input condition to occur. The desired event condition is programmed by the E [n parameter. If the $\angle U E$ parameter is set to $O F F$ the function will be ignored.

The second wait-for function is LUdE Wait-for Process Deviation Value. If a value is entered for this prompt, the profile will wait at this step until the desired process value is equal to or within the Lude Wait-for Process Deviation Value band. Even
though only one numeric number is programmed to wait-for, this absolute number represents both a positive and negative window around the desired process value.

Both wait-for functions (if enabled) must be satisfied before the time entered in the 508H Soak step will begin to decrement. Once the wait-for condition has been satisfied, the soak step time will continue to decrement regardless of event input or process changes during the remainder of the profile step.

Event Input Functions

In addition to being able to set the event input as a UU'E Wait-for Event, the event input can also be programmed to pause a running profile, start a profile, hold a profile, or abort a profile.

If the event input is set to PRuS Pause a profile, satisfying the event input condition will toggle the profile between hold and resume.

If the event input is set to hold Hold, the profile will end when the event input condition is satisfied. The controller will return to the non-ramping mode and will continue to control the outputs by holding the last active profile step set point and event output settings.

If the event input is set to $F \mathcal{F}$ ic or $[F, L \mathcal{L}]$, Profile 1 or Profile 2, the control will begin running the designated profile number selected when the event input condition has been satisfied if a profile is not currently running. This will begin at step 1 .

If the event input is set to RbSP Abort Set Point, the profile will end when the event input condition is satisfied. The controller will return to the nonramping mode and continue to operate by using the set point value programmed at the $865 P$ parameter. The event output settings will remain in the same state as the profile step settings when the profile was aborted.

Series 96 Ramping Modbus Register Numbers

Command activate	Registers	(Write Only)	Send to	Absolute Monitor	Relat Curren	Parameter file Register	(Read Only)
41210	1209	Resume Profile	1	45001	5000	File	
41211	1210	Hold Profile	1	45002	5001	Step	
40001	4000	Start File	1 or 2	45003	5002	Step Type	
40002	4001	Start Step	1-8	45004	5003	Wait for Event	put ${ }^{4}$
40003	4002	Start Profile	5	45005	5004	Wait for Devia	(process input) ${ }^{4}$
				45006	5005	Event Output	
				45007	5006	Hours	
				45008	5007	Minutes	
				45009	5008	Seconds	
				45010	5009	Current Set Po	
				45011	5010	Jump Count	
				45012	5011	End Set Point	
				45013 45014	5012	Rate ${ }_{\text {Profile }}$	
				45014	5013	Profile State	
Profile Definition Registers (Read and Write)				Note: $\begin{aligned} & \text { For } \\ & \text { nu }\end{aligned}$	For absolute numbers, add 40001 to each relative number.		

Parameter	File 1 Step 1	File 1 Step	File 1 Step	File 1 Step 4	File Step	File Step	File 1 Step	File Step	File 2 Step	File 2 Step	Step	File 2 Step 8				
Step Type	5020	5033	5046	5059	5072	5085	5098	5111	5124	5137	5050	5163	5176	5189	5202	5215
End Set Point	5021	5034	5047	5060	5073	5086	5099	5112	5125	5138	5151	5164	5177	5190	5203	5216
Hours 1 or 4	5022	5035	5048	5061	5074	5087	5100	5113	5126	5139	5152	5165	5178	5191	5204	5217
Minutes 1 or 4	5023	5036	5049	5062	5075	5088	5101	5114	5127	5140	5153	5166	5179	5192	5205	5218
Seconds 1 or 4	5024	5037	5050	5063	5076	5089	5102	5115	5128	5141	5154	5167	5180	5193	5206	5219
Rate ${ }^{2}$ and 3	5025	5038	5051	5064	5077	5090	5103	5116	5129	5142	5155	5168	5181	5194	5207	5220
EventOutput ${ }^{\text {, } 3 \text { or } 4}$	5026	5039	5052	5065	5078	5091	5104	5117	5130	5143	5156	5169	5182	5195	5208	5221
Waitfor Event Input 4	5027	5040	5053	5066	5079	5092	5105	5118	5131	5144	5157	5170	5183	5196	5209	5222
Waitfor Deviation (Process Input) 4	5028	5041	5054	5067	5080	5093	5106	5119	5132	5145	5158	5171	5184	5197	5210	5223
Jump File ${ }^{5}$	5029	5042	5055	5068	5081	5094	5107	5120	5133	5146	5159	5172	5185	5198	5211	5224
Jump Step ${ }^{5}$	5030	5043	5056	5069	5082	5095	5108	5121	5134	5147	5160	5173	5186	5199	5212	5225
Jump Count ${ }^{5}$	5031	5044	5057	5070	5083	5096	5109	5122	5135	5148	5161	5174	5187	5200	5213	5226
End Type ${ }^{6}$	5032	5045	5058	5071	5084	5097	5110	5123	5136	5149	5162	5175	5188	5201	5214	5227
* Register is disabled or unavailable.																
1 Register is only available if program type is set to Time.																
2 Register is only available if program type is set to Rate.																
3 Register is only available if step type is set to Set Point.																
4 Register is only available if step type is set to Soak.																
5 Register is only available if step type is set to Jump																
6 Register is only	availab	le if st	p type	is set to	End.											

Note: Data to be written to registers that are unavailable for a particular step type will be ignored.

Register 106 (Alarm 2 Status)
Register 110 (Alarm 3 Status)

0	No Alarm Exists
1	Alarm High State
2	Alarm Low State
3	Alarm High Latched State
4	Alarm Low Latched State
5	Alarm High Silenced State
6	Alarm Low Silenced State
7	Alarm High Latched \& Silenced State
8	Alarm Low Latched \& Silenced State
9	Alarm Waiting for In Range State
10	Alarm Disabled State
11	Alarm Error State

NOTE: For more information about communicating with Watlow controllers, go to www.watlow.com and download the Data Communications Reference: Electronic User's Manual. It is located under Literature, User's Manuals, English and search on data communications reference.

Appendix

Troubleshooting Alarms and Errors

Indication

Probable Cause(s)
Corrective Action

Power

- No power.
- Power to unit may be off.
- Fuse may be blown.
- Breaker may be tripped.
- Safety interlock door switch etc. may be activated.
- Separate system limit control may be latched.
- Wiring may be open.
- Input Power may be incorrect.
- Check switches, fuses, breakers, interlocks, limits, connectors, etc. for energized condition and proper connection.

Communications

- Unit will not communicate.
- Address parameter may be incorrectly set.
- Baud rate parameter may be incorrectly set.
- Unit-to-unit daisy chain may be disconnected. - Look for a break in the daisy chain.
- Communications wiring may be reversed, shorted or open.
- EIA-485 converter box may be incorrectly wired.
- Computer COM port may be incorrectly set up.
- Communications software setup or address may be incorrect.
- Protocol or parity may be wrong, should be 8 , $\mathrm{n}, 1$.
- Application software not working properly.
- May need termination and pull-up and pulldown resistors.
- Check comms setup menu and set to correct address.
- Check comms setup menu and set to correct baud rate.
- Verify correct connections and test wiring paths.
- Check converter box wiring and its documentation.
- Reconfigure computer's COM port setup and verify communications ok.
- Check the communication card documentation for setable variables and operational testing.
- Restart COMS software and check for settings agreement. Verify the COM bus is active.
- Verify operation with Watlow comms tool.
- Add termination resistors per EIA-485 standards if using this option.

Input Error (error number in top display, \% LED lit, percent power in bottom)

- Input is in error condition. Errl Underflow Err 2 Under Sensor Err3] Over Sensor Err4 Overflow
- The sensor may be improperly wired.
- Sensor wiring may be reversed, shorted or open.
- Input type setting may be for the wrong sensor/may not be calibrated.
- Input type setting may be for the wrong sensor/may not be calibrated.
- Ambient temperature may be too hot or too cold.
- The open loop detect shows a broken sensor.
- The calibration offset parameter is set much too high or low.
- Calibration may have been corrupted.
- Check sensor connections.
- Check sensor connections and sensor wiring.
- Change the Sensor Type parameter to match the sensor hardware.
- Change the Sensor Type parameter to match the sensor hardware. Try Restore Factory Calibration (Cal. 1 Menu).
- Verify that the temperature surrounding the controller is 32 to $149^{\circ} \mathrm{F}$ (0 to $65^{\circ} \mathrm{C}$).
- Check sensor function. The Open Loop Detect parameter indicates it may be broken.
- Check the Calibration Offset parameter value; set it to the correct value.
- Restore factory calibration. See pg. 6.22 for selecting rSt = YES.

Alarms		
- Alarm won't occur.	- Alarm output may be off. - Alarm set points may be incorrect. - Alarm may be silenced. - Alarm sides may be incorrect. - Controller may be in diagnostics mode.	- Configure output as an alarm. - Check alarm set points. - To clear the alarm, correct the alarm condition; check to see if the alarm is latched. - Check the alarm sides setting. - Check the alarm type setting.
- Alarm won't clear.	- Alarm may be latched. - Alarm set points may be incorrect. - Alarm hysteresis may be incorrect. - Input may be in error condition.	- Check the alarm logic for compatibility with system peripherals and annunciators. - Check the power limit setting. - Check the operation mode. - Check the alarm output function. - Check the ${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$ setting. - Check the calibration offset value; set it to a lower level.

Unit Errors (error number in top display,error message in bottom display)

- Er 4

RACT

- There is a RAM malfunction.
- Er 5
$E E \subset S$
- The EEPROM data is corrupted.
- Er 6 rorn
- There is a PROM malfunction.
- Er 7

HArd

- There is a logic hardware problem.
- Er 8

Plu9
cnF9
chng
Soft
CAL
BEOD
EEhd
nEUU
Rddr

- Module error.
- Configuration error. Module in invalid position.
- Er 10
- Er 1i
- Er iz
- Er 13
- Er 14
- Er 15
- Er 16
- Module changed.
- New firmware is installed.
- Calibration data is corrupted.
- There is an analog-to-digital hardware failure.
- There is an EEPROM hardware problem.
- It is the new unit's first power up.
- There is an EEPROM hardware problem.
- Cycle power to unit. If problem persists, return unit to factory.
- Cycle power to unit.
- Cycle power to unit. If problem persists, return unit to factory.
- Cycle power to unit. If problem persists, return unit to factory.
- Module defective, replace or verify module configuration.
- Return unit to factory.
- Cycle power to unit.
- Cycle power to unit.
- Recalibrate unit.
- Cycle power to unit. If problem persists, return unit to factory.
- Cycle power to unit. If problem persists, return unit to factory.
- Cycle power to unit. If problem persists, return unit to factory.
- Cycle power to unit. If problem persists, return unit to factory.

Series 96 Modbus Register Numbers

Relative	Parameters
0	Model Number
1	Serial Number 1
2	Serial Number 2
3	Software ID Number
4	Software Revision
5	Date of Manufacture
9	Input 2 Hardware Enabled
16	Output 1 Hardware
17	Output 2 Hardware
18	Output 3 Hardware
19	Output 4 Hardware
24	Disable Nonvolatile Memory
100	Process 1
101	Error 1
103	Percent Output
104	Actual 2
105	Process 2
106	Alarm 2 Status
110	Alarm 3 Status
200	Operation Mode
201	Event Input Status
202	Remote Set Point
203	Ramping Set Point
204	PID Power
205	Prop Term
206	Integral Term
207	Derivative Term
209	System Error
210	Open Loop Error
300	Set Point 1
301	Auto-Manual Operation Mode
304	Auto-tune Set Point 1
305	Auto-tune Start 1
306	Event Set Point 1
310	Manual Set Point
311	Clear Input Errors
316	Local-Remote (L-r)
319	Set Point 2
321	Alarm 2 Low
322	Alarm 2 High
331	Clear Alarms

Relative	Parameters
332	Silence Alarms
340	Alarm 3 Low
341	Alarm 3 High
500	Propband 1
501	Integral 1
502	Reset 1
503	Derivative 1
504	Rate 1
505	Dead Band 1
506	Cycle Time 1
507	Hysteresis 1
509	Burst 1
510	Propband 2
511	Integral 2
512	Reset 2
513	Derivative 2
514	Rate 2
515	Dead Band 2
517	Hysteresis 2
519	Burst 2
600	Sensor Type 1
601	Input 1
602	Range Low 1
603	Range High 1
604	Input Software Filter 1
605	Calibration Offset 1
606	Decimal 1
607	Input Error Latching
611	Input 2
612	Range Low 2
613	Range High 2
615	Calibration Offset 2
700	Output 1
701	Process 1 Type
713	Power Limit Set Point
714	High Power Limit Above
715	High Power Limit Below
717	Output 2
718	Process 2 Type
719	Alarm 2 Type
720	Alarm Hysteresis 2

Relative	Parameters
721	Latching 2
722	Silencing 2
723	Alarm Active Sides 2
724	Alarm Logic 2
725	Alarm Annunciation 2
734	Output 3
736	Alarm 3 Type
737	Alarm Hysteresis 3
738	Latching 3
739	Silencing 3
740	Alarm Active Sides 3
741	Alarm Logic 3
742	Alarm Annunciation 3
900	Units Type
901	C or ${ }^{\circ}$ F
902	Failure Mode
903	Manual Default Power
904	Open Loop Detect
1060	Event Function
1061	Event Condition
1100	Ramping Mode
1101	Ramp Rate
1102	Ramp Scale
1208	Program Type
1211	Abort Set Point
1300	Set Point Menu Lock
1301	Operations Page Mode Lock
1302	Setup Page Lock
1304	Custom Menu Lock
1305	Calibration Menu Lock
1314	Program Menu Lock
$1400-1415$	Custom Prompt Number (1-16)
1500	Ambient Temperature
1501	Ambient A-D Counts
1504	Channel 1 A-D Counts
1505	Channel 2 A-D Counts
1513	Test Display
1514	Test Output
1515	Line Frequency
1601	Restore Factory Calibration
1602	Default Settings

Special Modbus Functions

The following are modbus registers with special functions. Disable Non-volatile Memory (24); Alarm Status Output 2 (106); Alarm Status Output 3 (110); Auto-Manual Operation Mode (200); Clear Input Errors (311); Clear Alarms (331); Silence Alarms (332).

A " 0 " indicates an active state. Send " 1 " to the register to activate the function. It will automatically reset to " 0 " when the function is complete.

Note: For Absolute Modbus numbers, add 40001 to the Relative number.
Note: Refer to p. 7.7 for Modbus Register Numbers for ramping parameters.

Declaration of Conformity

Series 96

WATLOW Winona, Inc.
1241 Bundy Boulevard C
Winona, Minnesota 55987 USA

Declares that the following product:	
Designation: Series 96 Model Number(s): 96 (A or B) (0 or 1) - (C, D, F or K) (A, C, D, F or K) (A or D) (A, D, M, R or U) - (Any four letters or numbers) Classification: Temperature control, Installation Category II, Pollution degree 2 Rated Voltage: 100 to $240 \mathrm{~V} \sim$ (ac) or 24 to $28 \mathrm{~V} \approx$ (ac or dc) Rated Frequency: 50 or 60 Hz Rated Power Consumption: 7 VA maximum	

Meets the essential requirements of the following European Union Directives by using the relevant standards show below to indicate compliance.

89/336/EEC Electromagnetic Compatibility Directive

EN 61326:1997 With A1:1998 - Electrical equipment for measurement, control and laboratory use - EMC requirements (Industrial Immunity, Class A Emissions). EN 61000-4-2:1996 With A1, 1998 - Electrostatic Discharge Immunity EN 61000-4-3:1997 - Radiated Field Immunity
EN 61000-4-4:1995 - Electrical Fast-Transient / Burst Immunity
EN 61000-4-5:1995 With A1, 1996 - Surge Immunity
EN 61000-4-6:1996 - Conducted Immunity
EN 61000-4-11:1994 Voltage Dips, Short Interruptions and Voltage Variations Immunity
EN 61000-3-2:1995 With A1-3:1999 - Harmonic Current Emissions
EN 61000-3-3:1995 With A1:1998 - Voltage Fluctuations and Flicker

73/23/EEC Low-Voltage Directive

EN 61010-1:1993 With A1:1995 Safety Requirements of electrical equipment for measurement, control and laboratory use. Part 1: General requirements
déclare que le produit suivant :

Désignation:
 Numéros de modèles:

Séries 96
96 (A ou B) (0 ou 1) - (C, D, F ou K) (A, C, D, F ou K) (A ou D) (A, D, M, R, ou U) (N'importe quelle combinaison de quatre lettres ou chiffres)
Classification: Régulation de température, Catégorie d'installation II, Degré de pollution 2
100 à $240 \mathrm{~V} \sim$ (c.a) ou 24 à $28 \mathrm{~V} \approx$ (c.a ou c.c)
Tension nominale :
Fréquence nominale :

Consommation d'alimentation nominale : 7 VA maximum

Répond aux normes essentielles des directives suivantes de l'Union européenne en utilisant les standards normalisés ci-dessous qui expliquent les normes auxquelles répondre :

Directive 89/336/CEE sur la compatibilité électromagnétique

 EN 61326:1997 avec A1:1998 - Matériel électrique destiné à l'étalonnage, au contrôle et à l'utilisation en laboratoire - Exigences CEM (Immunité industrielle, Émissions de catégorie A).EN 61000-4-2:1996 Avec A1, 1998 - Immunité aux décharges électrostatiques EN 61000-4-3:1997 - Immunité aux champs de radiation
EN 61000-4-4:1995 - Immunité contre les surtensions électriques rapides/ Rafale EN 61000-4-5:1995 avec A1, 1996 - Immunité contre les surtensions
EN 61000-4-6:1996 - Immunité conduite
EN 61000-4-11:1994 Immunité contre les écarts de tension, interruptions courtes et variations de tension
EN 61000-3-2:1995 avec A1-3:1999 - Emissions de courant harmoniques EN 61000-3-3:1995 avec A1:1998 - Fluctuations et vacillements de tension

Directive 73/23/CEE sur les basses tensions
EN 61010-1:1993 avec A1:1995 Normes de sécurité du matériel électrique pour la mesure, le contrôle et l'utilisation en laboratoire. 1ère partie : Conditions générales

Erklärt, dass das folgende Produkt:

Deutsch

Bezeichnung: Serio 96
Modell-Nummern: $\quad 96$ (A oder B) (0 oder 1) - (C, D, F oder K) (A, C, D,
F oder K) (A oder D) (A, D, M, R oder U) -
(Beliebige vier Ziffern oder Buchstaben)
Klassifikation: Temperaturregler, Installationskategorie II,
Verschmutzungsgrad 2
100 bis $240 \mathrm{~V} \sim(\mathrm{ac})$ oder 24 bis $28 \mathrm{~V}=$ (AC oder DC)
50 oder 60 Hz
Max. 7 VA
Erfüllt die wichtigsten Normen der folgenden Anweisung(en) der Europäischen Union unter Verwendung des wichtigsten Abschnitts bzw. der wichtigsten Abschnitte die unten zur Befolgung aufgezeigt werden.

89/336/EEC Elektromagnetische Kompatibilitätsrichtlinie

EN 61326:1997 mit A1:1998 - Elektrisches Gerät für Messung, Kontrolle und Laborgebrauch - EMV-Anforderungen (Störfestigkeit Industriebereich, Klasse A Emissionen)
EN 61000-4-2:1996 mit A1, 1998 - Störfestigkeit gegen elektronische Entladung
EN 61000-4-3:1997 - Störfestigkeit gegen Strahlungsfelder
EN 61000-4-4:1995 - Störfestigkeit gegen schnelle Stöße/Burst
EN 61000-4-5:1995 mit A1, 1996 - Störfestigkeit gegen Überspannung
EN 61000-4-6:1996 - Geleitete Störfestigkeit
EN 61000-4-11:1994 Störfestigkeit gegen Spannungsabfall, kurze Unterbrechungen und Spannungsschwankungen
EN 61000-3-2:1995 mit A1-3:1999 - Harmonische Stromemissionen
EN 61000-3-3:1995 mit A1:1998 - Spannungsfluktationen und Flimmern
EN 61000-3-3: 1995 Grenzen der Spannungsschwankungen und Flimmern

73/23/EEC Niederspannungsrichtlinie

EN 61010-1:1993 mit A1:1995 Sicherheitsanforderungen für elektrische Geräte für Messungen, Kontrolle und Laborgebrauch. Teil 1: Allgemeine Anforderungen

Declara que el producto siguiente:
Español

Designación:
Serie 96
Números de modelo: $\quad 96$ (A o B) (0 ó 1) - (C, D, F o K) (A, C, D, F o K) ($A \circ D$) (A, D, U, M o R) - (Cualesquiera cuatro letras o números)
Clasificación: Control de temperatura, Categoría de instalación II, Grado de contaminación 2
Tensión nominal:
100 a $240 \mathrm{~V} \sim(C A)$ o 24 a $28 \mathrm{~V}=(C A \circ C D)$
Frecuencia nominal: 50 o 60 Hz
Consumo nominal de energía: 7 VA máximo

Cumple con los requisitos esenciales de las siguientes Directrices de la Unión Europea mediante el uso de las normas aplicables que se muestran a continuación para indicar su conformidad.

89/336/EEC Directriz de compatibilidad electromagnética

 EN 61326:1997 CON A1:1998.- Equipo eléctrico para medición, control y uso en laboratorio - Requisitos EMC (Inmunidad industrial, Emisiones Clase A). EN 61000-4-2:1996 con A1, 1988 - Inmunidad a descarga electrostática EN 61000-4-3:1997 - Inmunidad a campo radiado EN 61000-4-4:1995 - Inmunidad a incremento repentino/rápidas fluctuaciones eléctricas transitoriasEN 61000-4-5:1995 con A1, 1996 - Inmunidad a picos de voltaje o corriente EN 61000-4-6:1996 - Inmunidad por conducción
EN 61000-4-11:1994 Inmunidad a caídas de voltaje, variaciones y pequeñas interrupciones de voltaje
EN 61000-3-2:1995 con A1-3:1999 - Emisiones de corriente armónica
EN 61000-3-3:1995 con A1:1998 - Fluctuaciones de voltaje y centelleo.

73/23/EEC Directriz de bajo voltaje

EN 61010-1:1993 con A1:1995 Requisitos de seguridad de equipo eléctric para medición, control y uso en laboratorio. Parte 1: Requisitos generales

Jim Boigenzahn
Name of Authorized Representative
General Manager
Title of Authorized Representative

Winona, Minnesota, USA
Place of Issue
September 2001
Date of Issue

Signature of Authorized Representative

Specifications

(2200)

Controller

- Microprocessor-based, user-selectable control modes
- Heat and cool auto-tune for control outputs
- Universal input 1, auxiliary input 2, 4 outputs
- Control outputs user-selectable as on/off, P, PI, PID
- Input sample period; Single input 10 Hz (100 msec), dual input $5 \mathrm{~Hz}(200 \mathrm{msec})$ adjustable digital filter
- Display update; 2 Hz (500 msec), adjustable digital filter
- Retransmit output update; 1 Hz (1 second)
- Output update; burst, 0.1 to 999.9 seconds
- Input/Output/Communication isolation
- Displayed in ${ }^{\circ} \mathrm{C},{ }^{\circ} \mathrm{F}$, or process units

Operator Interface

- Dual 4-digit LED displays: upper 0.4 in (10.2mm), lower 0.244 in (6.2 mm)
- Advance, Up Arrow, Down Arrow, Infinity tactile keys

Standard Conditions For Specifications

- Ambient temperature $77^{\circ} \mathrm{F} / 25^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C}$, rated line voltage, 50 to $60 \mathrm{~Hz}, 0$ to 90% RH non-condensing, 15-minute warm-up

Universal Input 1

Thermocouple

- Type J, K, T, N, C (W5), E, PTII, D (W3), B, R, S thermocouple types
->20M Ω input impedance
- Maximum 20Ω source resistance
- $30 \mu \mathrm{~A}$ open detection bias

RTD

- 2- or 3-wire platinum, 100Ω
- JIS and DIN curves
- Whole or tenth degree indication
- $150 \mu \mathrm{~A}$ nominal RTD excitation current

Process

- Range selectable: $0-10 \mathrm{~V}=$ (dc), $0-5 \mathrm{~V}=$ (dc), $1-5 \mathrm{~V}=$ (dc), $0-20 \mathrm{~mA}, 4-20 \mathrm{~mA}$,
- Voltage input impedance $20 \mathrm{k} \Omega$
- Current input impedance 100Ω
- Minimum current source resistance $1 \mathrm{M} \Omega$
- Input resolution 50,000 bits (approx.) at full scale
- mV input impedance $20 \mathrm{M} \Omega$

Input 2

Event Input

- Contact or voltage
- $20 K \Omega$ input impedance
- Voltage input: event high state 3 to $36 \mathrm{~V}=$ (dc), event low state 0 to $2 \mathrm{~V}=$ (dc)
- Resistance/contact input: event high state $>23 \mathrm{k} \Omega$, event low state 0 to $2 \mathrm{k} \Omega$

Remote Set Point Input: mA or DC Range Selectable

- Voltage input impedance $20 \mathrm{k} \Omega$
- Current input impedance 100Ω

Output Types

Open Collector/Switched DC

- Open collector configuration:

Maximum voltage $42 \mathrm{~V}=$ (dc)
Maximum current 200 mA
Maximum "on" resistance 1.1Ω
Maximum offstate leakage current $100 \mu \mathrm{~A}$

- Switched dc configuration:

Switched dc supply voltage 22 to $28 \mathrm{~V}=$ (dc) dc supply current limited to 30 mA

Solid-state Relay

- Optically isolated
- Zero cross switched
- Without contact suppression
- Minimum load current 0.5 mA rms
- Maximum current 0.5 A rms at 20 to $280 \mathrm{~V} \sim(\mathrm{ac})$
- Maximum offstate leakage current $10 \mu \mathrm{~A}$ rms
- For resistive loads only, must use RC suppression for inductive loads

Electromechanical Relay

- Form C contact configuration
- Minimum load current 10 mA @ $5 \mathrm{~V}=$ (dc)
- Rated resistive and inductive loads: 2 A @ $250 \mathrm{~V} \sim(\mathrm{ac})$ or $30 \mathrm{~V}=$ (dc) maximum
- Electrical life 100,000 cycles at rated current
- For resistive loads only, must use RC suppression for inductive loads

Process

- Range selectable: $0-20 \mathrm{~mA}, 4-20 \mathrm{~mA}, 0-5 \mathrm{~V}=$ (dc), $1-5 \mathrm{~V}=$ (dc), $0-10 \mathrm{~V}=$ (dc)
- Reverse or direct acting
- 0 to $10 \mathrm{~V}=$ (dc) voltage output into $1,000 \Omega$ minimum load resistance
- 0 to 20 mA current output into 800Ω maximum load resistance
- Resolution: dc ranges $=2.5 \mathrm{mV}$ nominal mA ranges $=5 \mu \mathrm{~A}$ nominal
- Calibration accuracy: dc ranges $= \pm 15 \mathrm{mV}$ mA ranges $= \pm 30 \mu \mathrm{~A}$
- Temperature stability $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$

Retransmit

- Range selectable: 0-20mA, 4-20mA, 0-5V $=$ (dc), $1-5 \mathrm{~V}=$ (dc), $0-10 \mathrm{~V}=$ (dc)
- 0 to $10 \mathrm{~V}=$ (dc) voltage output into a $1,000 \Omega$ minimum load resistance
- 0 to 20 mA current output into an 800Ω maximum load resistance
- Resolution:
dc ranges $=2.5 \mathrm{mV}$ nominal
mA ranges $=5 \mu \mathrm{~A}$ nominal
- Calibration accuracy:
dc ranges $= \pm 15 \mathrm{mV}$
mA ranges $= \pm 30 \mathrm{~mA}$
- Temperature stability $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$

Communications

- EIA/TIA-485 or EIA/TIA-232
- Opto-isolated
- Modbus ${ }^{\text {TM }}$ RTU protocol
- 1200, 2400, 4800, 9600, 19200 baud rates
- 32 maximum units can be connected (with additional 485 repeater hardware, up to 247 units may be connected)

Accuracy

- Input ranges

Type J:	32	to $1382^{\circ} \mathrm{F}$	or	0	to	$750^{\circ} \mathrm{C}$	
Type K:	-328	to $2282^{\circ} \mathrm{F}$	or	-200	to $1250^{\circ} \mathrm{C}$		
Type T:	-328	to	$62^{\circ} \mathrm{F}$	or	-200	to	$350^{\circ} \mathrm{C}$
Type N:	32	to $2282^{\circ} \mathrm{F}$	or	0	to $1250^{\circ} \mathrm{C}$		
Type E:	-328	to $1470^{\circ} \mathrm{F}$	or	-200	to	$900^{\circ} \mathrm{C}$	
Type C(W5):	32	to	$4200^{\circ} \mathrm{F}$	or	0	to $2315^{\circ} \mathrm{C}$	
Type D(W3):	32	to	$4200^{\circ} \mathrm{F}$	or	0	to $2315^{\circ} \mathrm{C}$	
Type PTII:	32	to $2540^{\circ} \mathrm{F}$	or	0	to $1393^{\circ} \mathrm{C}$		
Type R:	32	to $2642^{\circ} \mathrm{F}$	or	0	to $1450^{\circ} \mathrm{C}$		
Type S:	32	to $2642^{\circ} \mathrm{F}$	or	0	to $1450^{\circ} \mathrm{C}$		
Type B:	1598	to $3090^{\circ} \mathrm{F}$	or	870	to $1700^{\circ} \mathrm{C}$		
DIN:	-328	to $1472^{\circ} \mathrm{F}$	or	-200	to $800^{\circ} \mathrm{C}$		
JIS:	-328	to $1166^{\circ} \mathrm{F}$	or	-200	to $630^{\circ} \mathrm{C}$		
Process:	-1999	to 9999 units					

Thermocouple Inputs

- Calibration accuracy $\pm 0.1 \%$ of span $\pm 1^{\circ} \mathrm{C}$ at standard conditions
Exceptions:
Type T; 0.12% of span for $-200^{\circ} \mathrm{C}$ to $-50^{\circ} \mathrm{C}$,
Types R and S; 0.15% of span for $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$
Types B; 0.24% of span for $870^{\circ} \mathrm{C}$ to $1700^{\circ} \mathrm{C}$
- Accuracy span: $1,000^{\circ} \mathrm{F} / 540^{\circ} \mathrm{C}$ minimum
- Temperature stability: ± 0.1 degree per degree change in ambient

RTD Inputs

- Calibration accuracy $\pm 0.1 \%$ of span $\pm 1^{\circ} \mathrm{C}$ at standard conditions
- Accuracy span: $1,000^{\circ} \mathrm{F} / 540^{\circ} \mathrm{C}$ minimum
- Temperature stability: ± 0.05 degree per degree change in ambient

Process Inputs

- Voltage input ranges

Accuracy $\pm 10 \mathrm{mV} \pm 1$ LSD at standard conditions
Temperature stability $\pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ maximum

- Milliamp input ranges

Accuracy $\pm 20 \mu \mathrm{~A} \pm 1 \mathrm{LSD}$ at standard conditions
Temperature stability $\pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ maximum

Agency Approvals

- UL 916 Listed file Number E185611; c-UL Approved,
- UL CCN QQXY, QQXY7 Process Control Equipment
- CE and NEMA 4X approved.

[^2]
Terminals

- Touch safe
- 22 to 12 AWG

Power

- $100-240 \mathrm{~V} \approx(\mathrm{ac} / \mathrm{dc})+10 \% ;-15 \% ; 50 / 60 \mathrm{~Hz}, \pm 5 \%$
- $24-28 \mathrm{~V}=(\mathrm{ac} / \mathrm{dc})+10 \%$; $-15 \% ; 50 / 60 \mathrm{~Hz}, \pm 5 \%$
- 7.0VA maximum power consumption
- Data retention upon power failure via nonvolatile memory

Operating Environment

- 32 to $149^{\circ} \mathrm{F}, 0$ to $65^{\circ} \mathrm{C}$
- 0 to 90% RH, non-condensing
- Storage temperature: -40 to $185^{\circ} \mathrm{F},-40$ to $85^{\circ} \mathrm{C}$

Dimensions

- Width 2.05 in. or 52 mm
- Height 2.05 in. or 52 mm
- Length 4.2 in. or 107 mm
- Depth behind panel surface 3.875 in. or 98.4 mm
- Approximate controller weight $0.4 \mathrm{lbs}(0.2 \mathrm{~kg})$

Allowable Operating Ranges

Type J:	1.0	32	to	1,500 ${ }^{\circ} \mathrm{F}$	or		to	$815^{\circ} \mathrm{C}$
	0.1	32.0	to	$999.9^{\circ} \mathrm{F}$	or	0.0	to	$815.0^{\circ} \mathrm{C}$
Type K:	1.0	-454	to	$2,500^{\circ} \mathrm{F}$	or	-270	to	$1,370^{\circ} \mathrm{C}$
	0.1	-199.9	to	$999.9^{\circ} \mathrm{F}$	or	-199.9	to	$999.9^{\circ} \mathrm{C}$
Type T:	1.0	-454	to	$750^{\circ} \mathrm{F}$	or	-270	to	$400^{\circ} \mathrm{C}$
	0.1	-199.9	to	$750.0^{\circ} \mathrm{F}$	or	-199.9	to	$400.0^{\circ} \mathrm{C}$
Type N:	1.0	32	to	$2,372^{\circ} \mathrm{F}$	or	0	to	$1,300^{\circ} \mathrm{C}$
	0.1	32.0	to	$999.9^{\circ} \mathrm{F}$	or	0.0	to	$999.9^{\circ} \mathrm{C}$
Type E:	1.0	-454	to	$1,470{ }^{\circ} \mathrm{F}$	or	-270	to	$800^{\circ} \mathrm{C}$
	0.1	-199.9	to	$999.9^{\circ} \mathrm{F}$	or	-199.9	to	$800.0^{\circ} \mathrm{C}$
Type C:	1.0	32	to	$4,200^{\circ} \mathrm{F}$	or	0	to	$2,315^{\circ} \mathrm{C}$
	0.1	32.0	to	$999.9^{\circ} \mathrm{F}$	or	0.0	to	$999.9^{\circ} \mathrm{C}$
Type D:	1.0	32	to	$4,200^{\circ} \mathrm{F}$	or	0	to	$2,315^{\circ} \mathrm{C}$
	0.1	32.0	to	$999.9^{\circ} \mathrm{F}$	or	0.0	to	$999.9^{\circ} \mathrm{C}$
Type PTII:	1.0	32	to	$2,543^{\circ} \mathrm{F}$	or	0	to	$1,395^{\circ} \mathrm{C}$
	0.1	32.0	to	$999.9^{\circ} \mathrm{F}$	or	0.0	to	$999.9^{\circ} \mathrm{C}$
Type R:	1.0	32	to	$3,200^{\circ} \mathrm{F}$	or	0	to	$1,760^{\circ} \mathrm{C}$
Type S: Type B:	1.0	32	to	$3,200^{\circ} \mathrm{F}$	or	0	to	$1,760^{\circ} \mathrm{C}$
	1.0	32	to	$3,300^{\circ} \mathrm{F}$	or	0	to	$1,816^{\circ} \mathrm{C}$
RTD (DIN)	1.0	-328	to	$1,472{ }^{\circ} \mathrm{F}$	or	-200	to	$800^{\circ} \mathrm{C}$
	0.1	-199.9	to	$999.9^{\circ} \mathrm{F}$	or	-199.9	to	$800.0^{\circ} \mathrm{C}$
RTD (JIS)	1.0	-328	to	$1,166^{\circ} \mathrm{F}$	or	-200	to	$630^{\circ} \mathrm{C}$
	0.1	-199.9	to	$999.9^{\circ} \mathrm{F}$	or	-199.9	o	$630.0^{\circ} \mathrm{C}$
Process		1,999		9,999				

Functionality Matrix

	Universal Input	 Remote Set Point	Control	Alarm	Retransmit	232/485
Comm						

[^3]
Ordering Information

(2201)

Series 96

Microprocessor-based
$1 / 16$ DIN with universal input 1. Options include software, power supply, input 2 , four outputs and display color
Power Supply
A $=100-240 \mathrm{~V} \approx(\mathrm{ac} / \mathrm{dc})$
$B=24-28 \mathrm{~V} \approx(\mathrm{ac} / \mathrm{dc})$
Input 2
0 = None
1 = Event input \& $0-5 \mathrm{~V}=$ (dc) $4-20 \mathrm{~mA}$ (remote set point input)

Output 1

C = Switched dc/open collector
D = Electromechanical relay, Form C, 2A, without RC suppression
F = Universal Process, range selectable: 0-20mA, 4-20mA, $0-5 \mathrm{~V}=$ (dc), $1-5 \mathrm{~V}=$ (dc), $0-10 \mathrm{~V}=$ (dc)
$\mathrm{K}=0.5 \mathrm{~A}$ solid-state relay without RC suppression

Output 2

A = None
C = Switched dc/open collector
D = Electromechanical relay, Form C, 2 A , without RC suppression
F = Universal Process, range selectable: $0-20 \mathrm{~mA}, 4-20 \mathrm{~mA}, 0-5 \mathrm{~V}=$ (dc), $1-5 \mathrm{~V}=$ (dc), $0-10 \mathrm{~V}=$ (dc)
$\mathrm{K}=0.5 \mathrm{~A}$ solid-state relay without RC suppression

Output 3

A = None
D = Electromechanical relay, Form C, 2A, without RC suppression

Output 4

A = None
D = Electromechanical relay, Form C, 2 A , without RC suppression
$R=232$ Communications
$U=485$ Communications
$\mathrm{M}=$ Universal Retransmit, range selectable: $0-20 \mathrm{~mA}$, $4-20 \mathrm{~mA}, 0-5 \mathrm{~V}=$ (dc), $1-5 \mathrm{~V}=$ (dc), $0-10 \mathrm{~V}=$ (dc)
Software/Preset Parameters
$00=$ Standard software
$\mathrm{AA}=$ Ramping
XX = Custom software
XX = Preset parameters

Standard Display/Overlay

Upper Lower
Display Display
RR = Red Red
RG $=$ Red Green
GR = Green Red
$\mathrm{GG}=$ Green Green
Ramping Display/Overlay
Upper Lower
Display Display
$B A=$ Red Red
$B B=$ Red Green
$B C=$ Green Red
$B D=$ Green Green

Index

A

Abort Set Point 6.11
Address 6.16
Alarm 2 High 6.6
Alarm 2 Low 6.6
Alarm 2 Type 6.11
Alarm 3 High 6.7
Alarm 3 Low 6.6
Alarm 3 Type 6.13
Alarm 4 High 6.7
Alarm 4 Low 6.7
Alarm 4 Type 6.14
Alarm
latching 5.9, 6.12, 6.13, 6.14
process or deviation 5.9
silencing 5.10
Alarm Active Sides 26.12
Alarm Active Sides 36.13
Alarm Active Sides 46.15
Alarm Annunciation 26.12
Alarm Annunciation 36.14
Alarm Annunciation 46.15
Alarm Hysteresis 26.12
Alarm Hysteresis 36.13
Alarm Hysteresis 46.14
Alarm Hysteresis 5.9
Alarm Logic 26.12
Alarm Logic 36.14
Alarm Logic 46.15
Alarm Menu 6.6-6.7
Alarm Set Points 5.9
Ambient A-D Counts 6.22
Ambient Temperature 6.22
Analog Output 46.15
Analog Output High 6.15
Analog Output Low 6.15
Analog Output Offset 6.16
Auto-Manual Operation Mode 6.2
Auto-tune Set Point 5.2, 6.3
Auto-tune 5.2, 6.2

B

Baud Rate 6.16
Bumpless transfer 5.11
Burst 16.4
Burst 26.5
Burst Fire 5.8

C

Calibration 1 Menu 6.22
Calibration Menu Lock 6.20
Calibration Offset 26.10
Calibration Offset 5.3, 6.3
Channel 1 A-D Counts 6.22
Channel 2 A-D Counts 6.22
configure the controller 4.4
communications 5.11
and retransmit options 3.7
${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F} 6.16$
Custom Menu 4.3, 5.1, 6.18-6.19
Custom Menu Lock 6.19
Custom Prompt number 6.18-6.19
Cycle Time 16.4
Cycle Time 26.5

D

Date of Manufacture 6.20
Dead Band 16.4
Dead Band 26.6
Dead Band 5.7
Decimal 16.9
Derivative 16.4
Derivative 26.5
Diagnostics Menu 6.20-6.22
digital event
wiring 3.3

E

End Step Menu 7.4
End 7.4
Errors
bumpless transfer 5.11
open loop detect 5.10
troubleshooting A.2-A. 3
Event Condition 6.11
Event Function 6.10
Event Input 5.4, 7.6
Event Input Status 6.2
Event Outputs 7.1
Event Outputs 7.2, 7.3
Event Set Point 6.3

F

Factory Page 4.2, 4.3, 6.18-6.22
Failure Mode 5.11, 6.16
feedback inside front cover
File 7.1
filter time constant 5.3

G

gap dimensions 2.1
Global Menu 6.16-6.17

H

High Power Limit Above 6.17
High Power Limit Below 6.17
High Resolution 6.21
Home Page 4.2, 4.3, 6.1
Hour 7.2, 7.3
Hysteresis 16.4
Hysteresis 26.6

I J

Input 16.8
Input 26.9
Hardware Enabled 6.21
Input 1 Menu 6.8-6.9
Input 2 Menu 6.9-6.11
Input Error Latching 6.16
inputs and outputs (graphic) 1.1
Input Software Filter 16.9
input-to-output isolation 3.1
input wiring 3.2-3.3
digital event 3.3
process 3.2, 3.3
RTD 3.2
thermocouple 3.2
installation 2.1-2.2
sensor 3.1
Integral 16.3
Integral 26.5
Isolation blocks 3.1
Jump Count 7.4
Jump File 7.4
Jump-loops 7.6
Jump Loop Menu 7.4
Jump Step 7.4

K

keys and displays 4.1

L

Latching 26.12
Latching 36.13
Latching 46.14
Line Frequency 6.22
Local or Remote Mode 6.3
Lockout Menu 6.19-6.20

M

Manual Default Power 6.16
Minutes 7.2, 7.3
Model Number 6.20
Monitor Menu 6.2

N

Navigation and Software 4.1-4.4 Raming menu 7.4

0

On/Off control 5.5
Open Loop Detect 5.10, 6.17
Operations Page 4.2, 4.3, 6.2-6.7
Operations Page Mode lockout 6.19

Output 16.11
Output 26.11
Output 36.13
Output 46.14
Output 1 Hardware 6.21
Output 2 Hardware 6.21
Output 3 Hardware 6.21
Output 4 Hardware 6.21
Output 1 Menu 6.11
Output 2 Menu 6.11-6.13
Output 3 Menu 6.13-6.14
Output 4 Menu 6.14-6.16
output wiring 3.4-3.7
AC 3.4-3.7
communications and retransmit 3.7
process 3.4, 3.5
switched DC, open collector 3.4, 3.5

P Q

panel cutout dimensions 2.1
Percent Output 6.2
PID 1 Menu 6.3-6.4
PID 2 Menu 6.5-6.6
Power Limit 5.2
Power Limit Set Point 6.17
power wiring 3.1
Process 26.2
Process 1 Type 6.11
Process 2 Type 6.11
Process 4 Type 6.15
process input
wiring $3.2,33$
process output
wiring 3.4, 3.5
Profiles
Menus 7.5
Resume 7.5
Running 7.5
Program Lock 6.20
Program Type 6.17
Propband 16.3
Propband 26.5

Proportional Control 5.6
Proportional plus Integral (PI) Control 5.6
Proportional plus Integral plus Derivative (PID) Control 5.7 Dual 5.7

R

Ramping Mode 6.17
Ramping Set Point 6.2
Ramp Scale 6.17
Ramp Rate 6.17
Range Low and Range High 5.4
Range High 16.9
Range High 26.10
Range Low 16.9
Range Low 26.10
Rate 7.2
Rate 16.4
Rate 26.5
remote set point
retransmitting 5.5
removing controller 2.2
Reset 16.3
Reset 26.5
Restore Factory Calibration 6.22
RTD input
wiring 3.2

S

safety information inside front cover
Seconds 7.2, 7.3
sensor
installation 3.1
selection 5.3
Sensor Type 16.8
Serial Number 16.20
Serial Number 26.20
Set Point 7.2
Lock 6.19
ramping to 5.8
Set Point 2 6.3, 7.3
Set Point Step 7.2
Setup Page 4.2, 4.3, 6.8-6.17
Setup Page Lock 6.20
Silencing 26.12
Silencing 36.13
Silencing 46.15
Soak Step 7.3
Soak Step Wait-for Functions 7.6
Software ID Number 6.20
software map 4.3
Software Revision 6.21
Step 7.1
Step Type 7.1

T

tasks 4.4
technical assistance inside front cover
Test Display 6.21
Test Output 6.21
thermocouple inputs wiring 3.2
Troubleshooting 6.22
Troubleshooting Alarms and Errors A.1-A. 2

U V

Units Type 6.16
User Menu 6.2-6.3

W X Y Z

Wait-for Deviation Value 7.3
Wait-for Event Input 7.3
warranty information back cover
wiring 3.1-3.9
Input 13.2
Input 23.3
Output 13.4
Output 23.5
Output 33.6
Output 43.7
wiring example 3.9

Prompt Index

	1
1	4
1	10
1	20
2	1
2	4
2	10
2	20
4	1
4	4
4	10
4	20

Output Calibration 1，1V Output Calibration 1， 4 mA Output Calibration 1，10V 20 Output Calibration 1， 20 mA Output Calibration 2，1V Output Calibration 2， 4 mA Output Calibration 2，10V
20 Output Calibration 2， 20 mA
$4 \quad$ Output Calibration 4，1V
$4 \quad 4$ Output Calibration $4,4 \mathrm{~mA}$
420 Output Calibration 10 m

A
A Ou Process Calibration 1， 0 V
ACh 1 Alarm 2 High 6.6
ALL 0 Alarm 2 Low 6.6
A3h ．Alarm 3 High 6.7
A3L A Alarm 3 Low 6.6
R 48 Process Calibration 1， 4 mA
R4h 1 Alarm 4 High 6.7
RYLO Alarm 4 Low 6.7
A 100 Process Calibration 1，10V
R208 Process Calibration 1， 20 mA
RCRL Analog Output Offset 6.16
Acnt Ambient A－D Counts 6.22
Addr Address 6.16
A h A Analog Output High 6.15
Rhy Alarm Hysteresis 26.12
Ahy3 Alarm Hysteresis 36.13
Ahy4 Alarm Hysteresis 46.14
RL「7 Alarm Menu 6．6－6．7
A Lo Analog Output Low 6.15
A－C7 Auto－Manual Operation Mode 6.2
Aア7b Ambient Temperature 6.22
AnuC Alarm Annunciation 26.12
Anu3 Alarm Annunciation 36.14
Rnu4 Alarm Annunciation 46.15
Rout Analog Output 46.15
RE SP Auto－tune Set Point 6.3
RE Y 2 Alarm 2 Type 6.11
RtY3 Alarm 3 Type 6.13
Rty4 Alarm 4 Type 6.14
Rut Auto－tune 6.2
AbSP Abort Set Point 6.11

B
600 Process Calibration 2，0V
b 48 Process Calibration 2， 4 mA
6100 Process Calibration 2，10V
b208 Process Calibration 2， 20 mA
bRUd Baud Rate 6.16
br 5 ！Burst 16.4
brS2 Burst 26.5

C
［ 8 L Calibration Menu Lock 6.20
［RLI Calibration Offset 6.3
CRLD Calibration Offset 26.10
cin 1 Calibration 1 Menu 6.22
cinc Calibration 2 Menu
［－F ${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F} 6.16$
cat 1 Channel 1 A－D Counts 6.22
cot C Channel 2 A－D Counts 6.22
cout Process Output Calibration Menu
［を \quad Cycle Time 16.4
［t ट］Cycle Time 26.5
CUSE Custom Menu 6．18－6．19
［USE Custom Menu Lock 6.19

NOTE：Complete information on calibration prompts are explained at Watlow＇s web site，http：／／www．watlow． com／literature／prodtechinfo．Search on 96 calibration manual．

D	
dite	Date of Manufacture 6.20
db 1	Dead Band 16.4
db 2	Dead Band 26.6
dE I	Derivative 16.4
dE ट	Derivative 26.5
dEL	Decimal 16.9
dFLE	Default Settings 6.22
d189	Diagnostics Menu 6．20－6．22
d，5P	Test Display 6.21
E	
$E \mathrm{c}$	Event Condition 6.11
	Event Function 6.10
Err	Input Error Latching 6.16
End	End Step Menu 7.4
End	End 7.4
E SP	Event Set Point 6.3
E $5 t$	Event Input Status 6.2
Eunt	Event Outputs 7.1
Eout	Event Outputs 7．2， 7.3
F	
FR IL	Failure Mode 6.16
F，LE	File 7.1
Fcty	Factory Page menus 6．18－6．22
Ftr 1	Input Software Filter 16.9
G	
9LbL	Global Menu 6．16－6．17
9nd	Set Ground
H	
Hour	Hour 7．2， 7.3
hres	High Resolution 6.21
hY5	Hysteresis 16.4
hy52	Hysteresis 26.6
IJ K	
in 1	Input 16.8
in 2	Input 26.9
InP 1	Input 1 Menu 6．8－6．9
InPD	Input 2 Menu 6．9－6．11
it 1	Integral 16.3
It 2	Integral 26.5
ビリ2	Input 2 Hardware Enabled 6.21
UL	Jump Count 7.4
UF	Jump File 7.4
UL	Jump Loop Menu 7.4
U	Jump Step 7.4
L	
L9c2	Alarm Logic 26.12
19c3	Alarm Logic 36.14
L9c4	Alarm Logic 46.15
lRt2	Latching 26.12
LRE3	Latching 36.13
LREY	Latching 46.14
LERd	Lead Resistance Calibration
$L \ln E$	Line Frequency 6.22
LOC	Lockout Menu 6．19－6．20
L－r	Local or Remote Mode 6.3
M N	
f78n	Manual Default Power 6.16
cidl	Model Number 6.20
¢7in	Minutes 7．2， 7.3
f7on	Monitor Menu 6.2
0	
OPER	Operations Page menus 6．2－6．7
OPER	Operations Page Mode Lock 6.19
OPLP	Open Loop Detect 6.17
OtY	Output 1 Hardware 6.21
Oty2	Output 2 Hardware 6.21
0ty3	Output 3 Hardware 6.21
Oty	Output 4 Hardware 6.21
Ot	Output 16.11
Ot 2］	Output 26.11
Ot 3	Output 36.13

Ot 4 Output 46.14
Out 1 Output 1 Menu 6.11
Out 2 Output 2 Menu 6．11－6．12
Out 3 Output 3 Menu 6．13－6．14
Out4 Output 4 Menu 6．14－6．16
P Q
P_{1} to $P 16$ Custom Prompt number（1－16） 6．18－6．19
Pb $\quad 1$ Propband 16.3
Pb ट Propband 26.5
Pcnt Percent Output 6.2
P．d PID 1 Menu 6．3－6．4
P，dट PID 2 Menu 6．5－6．6
PLSP Power Limit Set Point 6.17
PL \quad High Power Limit Above 6.17
PL b High Power Limit Below 6.17
Pr己 Process 26.2
Pre Process 1 Type 6.11
Pred Process 2 Type 6.11
Prc4 Process 4 Type 6.15
PtyP Program Type 6.17
Pr09 Program Lock 6.20
R
r 15 RTD Calibration， 15Ω
$r 380$ RTD Calibration， 380Ω
rREE Rate 7.2
r REE Ramp Rate 6.17
rR 1 Rate 16.4
$r \boldsymbol{r}$ 己 Rate 26.5
rE \quad Reset 16.3
rE ट Reset 26.5
$r E_{u}$ Software Revision 6.21
rh \quad Range High 16.9
rh 2 Range High 26.10
rl \quad Range Low 16.9
rl 己 Range Low 26.10
$r \boldsymbol{r}$ Ramping Mode 6.17
rP 5 Ramp Scale 6.17
rPSP Ramping Set Point 6.2
rSt Restore Factory Calibration 6.22
S
SE［ Seconds 7．2， 7.3
SEn I Sensor Type 16.8
SEE Setup Page menus 6．8－6．17
SEE Setup Page Lock 6.20
S ．dट］Alarm Active Sides 26.12
5．d3 Alarm Active Sides 36.13
S．d4 Alarm Active Sides 46.15
［5 IL 己 Silencing 26.12
5 IL 3 Silencing 36.13
5 IL4 Silencing 46.15
$5 \cap 1$ Serial Number 16.20
Sn己 Serial Number 26.20
SoRH Soak Step menu 7.3
SoFt Software ID Number 6.20
SPD Set Point 26.3
5 5P Set Point Lock 6.19
5P Set Point 7.2
StEP Step 7.1
StPt Set Point Step menu 7.2
StyP Step Type 7.1

T
tc00 Thermocouple Calibration， 0 mV
$t \subset 32$ Thermocouple Calibration， 32 mV
$t \subset 50$ Thermocouple Calibration， 50 mV
Lout Test Output 6.21
LSHE Troubleshooting 6.22
U V W X Y Z
U＇it Units Type 6.16
USEr User Menu 6．2－6．3
LUdE Wait－for Deviation Value 7.3
LU＇E Wait－for Event Input 7.3

Series 96 Software Map

Home Page

96 Process 1 Value
96 Set Point Value，
Remote Set Point Value or Percent Output Value 96 Custom Menu＊＊．．． P！

Program Menu

（see pg．7．1）
Operations Page
مTon Monitor Menu
OPEr Operations Page
Pre Process 2＊＊
Pcnt Percent Output
rPSP Ramping Set Point＊
E $5 \in$ Event Input Status
USE User Menu
OPEr Operations Page
（ - － 7 Auto－Manual Operations Mode ${ }^{* *}$
Rut Auto－tune
RESP Auto－tune Set Point
SPL Set Point 2＊＊
E SP Event Set Point＊＊
L－r Local or Remote $\overline{\text { Mode }}{ }^{* *}$
［RL I Calibration Offset
P Id I PID 1 Menu
DPEr Operations Page
Pb I Propband 1
It Integral 1
TE Reset 1
dE Derivative 1
$\begin{array}{ll}-8 & \text { Rate } 1\end{array}$ br 5 I Burst 1
［L Cycle Time 1
hy5 Hysteresis 1
db Dead Band 1
PIdC PID 2 Menu
OPEr Operations Page
Pb ट Propband 2
It ट Integral 2
rE C Reset 2
dE C）Derivative 2
rA C）Rate 2
brS2 Burst 2
［t 己 Cycle Time 2
hy52 Hysteresis 2
db ट Dead Band 2

FLTT Alarm Menu

OPE Operations Page
RELO Alarm 2 Low
A2h，Alarm 2 High
R3LO Alarm 3 Low
R3h，Alarm 3 High
\qquad

84Lo Alarm 4 Low
84h，Alarm 4 High

Enter your settings on a photo－ copy of this page．

Setup Page
in P in Input 1 Menu
SEE Setup Page
SEn I Sensor Type
In I Input Type 1

rl	Range Low 1

rh I Range High
dE［ Decimal 1
FEr I Input Software Filter 1
InPC Input 2 Menu
SEt Setup Page
In 2 Input $2^{* *}$
$r l \geq$ Range Low 2＊＊
rh 2 Range High 2＊＊
［RAL C）Calibration Offset 2＊＊
EFn Event Function E E п Event Condition
ROSP Abort Set Point＊ \qquad
Out 1 Output 1 Menu
SEE Setup Page
Ot I Output 1
Prc1 Process Type 1
Out？Output 2 Menu
SEE Setup Page
Ot 2 Output 2
Pre2）Process Type 2
Rty A Alarm Type 2
Rhy A Alarm Hysteresis 2
LREC）Latching 2
5 IL ［ Silencing 2
5．d2 Alarm Active Sides 2
LSc2）Alarm Logic 2
［RnuC］Alarm Annunciation 2
Out 3 output 3 Menu
SEE Setup Page
Ot 3 Output 3
RE 43 Alarm Type 3
RhY3 Alarm Hysteresis 3
LRE 3 Latching 3
（5il 3 Silencing 3
（5，d3）Alarm Active Sides 3
［9c3）Alarm Logic 3
［Rnu3］Alarm Annunciation 3

Out 4 Output 4 Menu

SEE Setup Page
Ot 4 Output 4
RE Y4 Alarm Type 4
Rhy 4 Alarm Hysteresis 4
LAE 4 Latching 4
（5il4）Silencing 4
5．d4 Alarm Active Sides 4
LSc4 Alarm Logic 4
（Rnc4 Alarm Annunciation 4
Rout Analog Output 4
Prct Process Type 4
A h，Analog Output High
A Lo Analog Output Low
ACRL Analog Output Offset
bRUd Baud Rate
Rddr Address

$\frac{9 L b}{S E E}$	\square Global Menu Setup Page
Un ${ }^{\text {ct }}$	Units Type
C－F	C or F
	Input Error Latching
FAIL	Failure Mode＊＊
P78n	Manual Default Power＊
PLSP	Power Limit Set Point
PL 8	High Power Limit Above
PL b	High Power Limit Eelow
	Ramping Mode＊＊
${ }_{r} \mathrm{P} 5$	Ramp Scale＊＊＊
CREE	Ramp Rate＊＊
	Open Loop Dete
	Progra

Factory Page
［USE custom Menu＊
Fcty Factory Page

$\begin{array}{r} F \subset \in Y \\ P i \end{array}$	Factory Page
P	
P3	
P4	
PS	
P6	
P 7	
P8	
P9	
P 10	
P 11	
P iz	
P 13	
P 14	
P 15	
P16	

LIL Lockout Menu

Fcty Factory Page
5P Set Point Lock
Pro9 Program Menu Lock＊
［uSt Custom Menu Lock＊＊
OPEr Operations Page Mode
SEt Setup Page Lock
［AL Calibration Menu Lock

d IF9 Diagnostics Menu

Fcty Factory Page
CクJL Model Number
dREE Date of Manufacture
Sn I Serial Number 1
5 SL Serial Number 2
Soft Software ID Number
It Y 2 Input Type 2
rEu Software Revision
Oty 1 Output 1 Hardware
Ot y 2 Output 2 Hardware
Ot 43 Output 3 Hardware
Ot y 4 Output 4 Hardware
tout Test Output
d ISP Test Displays
hrES High Resolution
A「7b Ambient Temperature
Acnt Ambient A－D Counts
cant I Channel 1 A－D Counts
cnt C Channel 2 A－D Counts
t5ht Communications Test／
Troubleshooting
LinE Line Frequency
The Factory Page also includes calibration parameters that are not necessary for everyday use of the controller．Calibration parameters and procedures are explained at Watlow＇s web site， http：／／www．watlow．com／litera－ ture／prodtechinfo．Search on 96 calibration manual．

＊Menu added if ramping versi of the controller is selected （96 \qquad \qquad －AA＿＿）． ＊＊Menu removed if ramping version of the controller is selected（96 \qquad ）． －AA＿＿）．

How to Reach Us

TOTAL CUSTOMER SATISFACTION 3 YearWarranty

Quality and
 Mission
 Statement:

Watlow Winona will be the world's best supplier of industrial temperature control products, services, and systems by exceeding our customers', employees', and shareholders' expectations.

Your Authorized Watlow Distributor is:

- Phone: (507) 454-5300.
- Fax: (507) 452-4507.
- For technical support, ask for an Applications Engineer.
- To place an order, ask for Customer Service.
- To discuss a custom option, ask for a Series 96 Product Manager.

Warranty

The Watlow Series 96 is warranted to be free of defects in material and workmanship for 36 months after delivery to the first purchaser for use, providing that the units have not been misapplied. Since Watlow has no control over their use, and sometimes misuse, we cannot guarantee against failure. Watlow's obligations hereunder, at Watlow's option, are limited to replacement, repair or refund of purchase price, and parts which upon examination prove to be defective within the warranty period specified. This warranty does not apply to damage resulting from transportation, alteration, misuse, or abuse.

Returns

- Call or fax Customer Service for a Return Material Authorization (RMA) number before returning a controller.
- Put the RMA number on the shipping label, and also on a written description of the problem.
- A restocking charge of 20% of the net price is charged for all standard units returned to stock.

[^0]: ****Output 4 parameters cannot be changed with the Modbus interface.

[^1]: ****Output 4 parameters cannot be changed with the Modbus interface.

[^2]: Modbus ${ }^{\text {TM }}$ is a trademark of AEG Schneider Automation.
 $U L^{\circledR}$ is a registered trademark of the Underwriter's Laboratories, Inc.

[^3]: Note: These specifications are subject to change without prior notice.

